TABLE OF CONTENTS

	GENERAL	
	2	RIGID COMPOUND SYSTEMS
	3	FLEXIBLE COMPOUND SYSTEMS
INDUSTRIAL PIPE / SPECIAL PIPE		
SHUT-OFF VALVES		

1.1 isoplus - The Company
1.1.1 Preface $6^{\text {th }}$ Edition. $1 / 1$
1.1.2 The Group 1/2-4
1.2 isoplus - Your Partner in Europe and Near East
1.2.1 Overview. $1 / 5$
1.2.2 Locations and Salespartners. 1/6-8
1.3 isoplus - Your Plus of Safety
1.3.1 Quality-Assurance, Service, Documentation. 1/9-12
1.3.2 Who is doing what? $1 / 13$

1 GENERAL

1.1 isoplus - The Company

1.1.1 Preface G $^{\text {th }}$ Edition

The $5^{\text {th }}$ edition of the isoplus design manual, established in April 2005, was an essential step in more than thirty-five years history of isoplus group of companies, in order to comply with the increased requirements of energy supply.

Within six years the total edition of approx. 10.000 pieces were sold out. Due to product developments, technical innovation and permanent change of market requirements, this new and completed $6{ }^{\text {th }}$ edition was necessary.

This $6^{\text {th }}$ edition is also available under www.isoplus.org where it will be permanently updated and offered for download.

We want to thank everybody who helped us to create this $6^{\text {th }}$ edition. All technical, informative and general important proposals for completion have been considered. The structure of chapters has been revised in general.

In this regard, we refer especially to chapter
>> 2 - Rigid Compound Systems
and especially to isoplus-Conti-Pipe System. In this chapter you will find also the complete product range of isoplus-Double Pipe System, including the corresponding application and assembling instructions.
isoplus is a member of German Association of District Heating e. V., AGFW and of the German Federation of District Heating Pipes e. V., BFW.
All isoplus production plants are certified according to DIN EN ISO 9001 and DIN EN ISO 14001, - Your plus of safety.

Besides of this design manual all isoplus-production plants, all sales partners and external sales people will be at your disposal. Furthermore you may contact directly our district heating engineers at the several design departments of our companies.

Your general management of the isoplus group of companies.

1.1 isoplus - The Company

1.1.2 The Group

The isoplus group of companies consists of several legal independent production and distribution companies, who are acting all over Europe. However isoplus stands for more than just a name. It is the idea to offer a complete production range for our customers, that means delivery of the material incl. all required assembling and post insulation work, carried out by isoplus assembly-technicians.

This company-philosophy „all from one hand" in connection with isoplus-quality, innovative products and isoplus delivery-confidence leads the company isoplus through more than 35 years impressive success and to an important position on international markets.

As manufacturer of preinsulated pipe systems for the supply of energy and for all kind of industrial applications, we are producing in our factories in Europe with totally 1.200 employees, preinsulated pipes and fittings conventionally as well as continuously by using high technology equipment. Our additional regional offices will guarantee for an optimum of local service.

The isoplus group of companies is delivering approx. 3.000 km of pipes per year, world-wide, in dimensions of DN 20 up to DN 1000 mm . As a qualified group of companies, the products of our sub-suppliers as well as our finished products have to pass very strong quality control procedures by external and internal quality-engineers. Therefore our products correspond to the requirements of the European Standards as well as to all other valid technical regulations in all respects.

Preinsulated district heating pipelines with PEHD jacket pipe can be used for direct channel free buried-laying. By use of various fittings and compensating elements a perfect system comes into being which is flexible enough even in difficult conditions, i. e. in city-centres, unusual terrain or in case of subterranean passing of rivers. Traffic-interruptions can be reduced to a minimum in accordance with the construction companies, due to short assembly times.

The isoplus-simplex-pipe, with PEHD-jacket pipe or SPIROjacket pipe, has been practically proved during many years, not only by technical perfection, but mainly by economical aspects concerning purchase, assembling and maintenance.

1.1 isoplus - The Company

The most innovative and most economic variant of the preinsulated pipe-systems is the development of the isoplus-double-pipe. By use of a PEHD jacket pipe, essential savings can be reached concerning heat loss, constructing and assembling expenses, quantities of shrinkable couplers and expansion pads, and for leak detection.

The isoplus-double-pipe, energy saving marvel, unique in economy and ecology, produced in conventional and also by continuous production procedure.

All rigid simplex- or double-pipe-systems are additionally selfcontrolled by IPS-Cu ${ }^{\circledR}$ or IPS-NiCr ${ }^{\circledR}$ on every cm of the pipe-line lengths. The foamed in leak detecting control wires will indicate each moisture penetration and each wire breakage within the network.

Additionally to rigid-pipe-systems isoplus is producing flexible-pipesystems as well, which are especially used for house connections. Coiled down, isoplus-flexible-pipes can by-pass obstacles without any problems. Carrier pipes made of steel, copper, PEX or PE are available.

For the production of isoplus-simplex, duplex- and flex-pipes, the excellent insulating PUR-rigid foam will be used. The absolute moisture protection due to the shock-resistant and break-proof PEHD-jacket guarantees a high degree of reliability for many years.

The different laying techniques for isoplus pipe systems like thermal pre-stressing, cold laying as well as tapping-branches reduce the laying costs considerably because natural compensation elements such as L-, Z- or U-bends are not necessary. The same applies for the underground working as only for couplers and expansion pads larger areas have to be provided.

Pipe line systems exposed to extremely high temperatures and pressures put high demands to material and manufacturing. The dimensioning of isoplus-steel jacket-pipes applies to the extreme conditions for the distribution of hot water or steam and thus guarantees a high degree of safety. The outside steel jacket pipe is a closed system, water-proof and gas-proof. A standard PE covering serves as corrosion protection. For heat insulation mineral or rock wool fibre shells are used.

1 GENERAL
1.1 isoplus - The Company

All isoplus-products might be used for different applications such as heating, sanitary, steam, cooling pipes, oil, chemical and foodstuff industry etc. and temperatures at least according to EN 253. Perfect welding engineering within the steel and PE area guarantee solid products with the necessary operational reliability.

Individual design leads to optimised district heating networks and guarantees an economic and ecological solution for working and operation steps. Show us your problem, we will show you the solution.

The fabrication in our production plants as well as the quality assurance and the documentation applies to the European quality standard DIN EN ISO 9001. In addition to our products we offer a wide and complete range of services. A qualified consulting during all steps of your projects given by our certified chief engineers, mechanical engineers as well as by our regional sales engineers guarantee the perfect installation of isoplus-products.

In addition, our construction department guarantees the necessary calculations for pipe static which are documented with the delivery of the routing plan. Specifications and routing modifications are easily documented and thus assure in coordination with the fabrication smooth site works.

The international quality standard of the isoplus systems in combination with isoplus special products and the use of modern laying techniques results in economic district heating networks and helps to guarantee a trouble-free operation for many years.

The is@plus GROUP - YOUR PARTNER!

1 GENERAL

1.2 isoplus - Your Partner in Europe and Near East

1.2.1 Overview

(-) Headoffice / Sales
GERMANY, Rosenheim

- Production / Sales

GERMANY, Sondershausen
AUSTRIA, Hohenberg
HUNGARY, Budapest
CZECH REPUBLIC, Pardubice
ROMANIA, Oradea
SERBIA, Aleksinac
KUWAIT, Safat

Sales

GERMANY, Berlin
DENMARK, Middelfart
SLOVAKIA, Dunajská Streda
POLAND, Kattowitz
CROATIA, Zagreb
SERBIA, Belgrad
SWITZERLAND, Islikon

The isoplus-group is additionally represented in various countries.
A list of these countries and the corresponding isoplus branch offices you will see on following pages.

[^0]
1.2 isoplus - Your Partner in Europe and Near East

1.2.2 Locations and Salespartners

isoplus Fernwärmetechnik Vertriebsgesellschaft mbH Aisinger Straße 12 83026 Rosenheim GERMANY
Fon: +49 8031 / 650-0
Fax: +49 $8031 / 650-110$
e-mail: info@isoplus.de

Opus

isoplus Fernwärmetechnik Ges. m. b. H.
Furthoferstraße 1a 3192 Hohenberg AUSTRIA
Fon: +43 $2767 / 8002-0$
Fax: +43 2767 / 80 02-80
e-mail: office@isoplus.at

Opus

isoplus Romania S.R.L. Conducte preizolate
Strada Uzinelor Nr. 3/H - 3/G
410605 Oradea-Județul Bihor ROMANIA
Fon: +40 259 / 479808
Fax: +40 259 / 446588 e-mail: office@isoplus.ro

isoplus Fernwärmetechnik Vertriebsgesellschaft mbH Beilsteiner Straße 118
12681 Berlin
GERMANY
Fon: +49 30 / 54 98 83-0
Fax: +49 30 / $549883-33$
e-mail: berlin@isoplus.de

isoplus Távhővezetékgyártó Kft.
Kunigunda utca 45
1037 Budapest III. HUNGARY
Fon: +36 1-250 / 4440
Fax: +36 1-250 / 2731
e-mail: isoplus@isoplus.hu

- Oplus

isoplus Fjernvarmeteknik A/S
Korsholm Alle 20
5500 Middelfart DENMARK
Fon: +4564416109
Fax: +4564416159
e-mail: iso@isoplus.dk

isoplus Fernwärmetechnik GmbH
Schachtstraße 28
99706 Sondershausen GERMANY
Fon: +49 3632 / 65 16-0
Fax: +49 3632 / 65 16-99
e-mail: sondershausen@isoplus.de

isoplus eop s.r.o. Areál elektrárny Opatovice nad Labem 53213 Pardubice 2 CZECH REPUBLIC
Fon: +420 466 / 536021
Fax: +420 466 / 843619
e-mail: isoplus@isoplus-eop.cz

isoplus polska $\mathrm{Sp} . \mathrm{z}$ o.o.
ul. Zeliwna 43
40-559 Katowice
POLAND
Fon: +48 32 / 2590410
Fax: +48 32 / 2590411
e-mail: biuro@isoplus.pl

isoplus d.o.o.
Prodaja
Aleksandra Stamboliskog 3/b
11000 Belgrad
SERBIA
Fon: +381112661324
Fax: +381112664123
e-mail: isoplus@isoplus.co.rs

- 0 Plus

isoplus Zagreb d.o.o.
Predizolirane Cijevi
Vrlička 12
10000 Zagreb
CROATIA
Fon: +38513011-634
Fax: +38513011-630
e-mail: isoplus@isoplus.hr

〇plus

isoplus Mediterranean s.r.l.
Via Dell'Artigianato, 347 45030 Villamarzana (RO) ITALY
Fon: +39 04251718000
Fax: +39 04251718001
e-mail: info@isoplus.it

- plus

isoplus d.o.o.
Proizvodnja
Aleksinački rudnici bb. 18220 Aleksinac SERBIA
Fon: +381 18882000
Fax: +381 18882001
e-mail: isoplus@isoplus.co.rs

+ Opus

isoplus (Schweiz) AG
Alte Landstraße 39
8546 Islikon SWITZERLAND
Fon: +4152 3690808
Fax: +41523690809
e-mail: info@isoplus.ch

isoplus France SAS
19 Av de Chantelot
69520 Grigny
FRANCE
Fon: +33437600993
Fax: +33472895185
e-mail: contact@isoplus-france.com

1.2 isoplus - Your Partner in Europe and Far East

The following countries are currently supported by isoplus (Edition 01/2012):

Country:	Support:
Austria	isoplus in Austria, Hohenberg
Belgium	isoplus in the Netherlands, Breda
Bosnia-Herzegovina	isoplus in Germany, Rosenheim
Brazil	isoplus in Austria, Hohenberg
Bulgaria	isoplus in Germany, Rosenheim
Croatia	isoplus in Croatia, Zagreb
Czech Republic	isoplus in Czech Republic, Pardubice
Denmark	isoplus in Denmark, Middelfart
Estonia	isoplus in Denmark, Middelfart
Finland	isoplus in Denmark, Middelfart
France	isoplus in France, Grigny
Germany	isoplus in Germany, Rosenheim
Great Britain	isoplus in Denmark, Middelfart
Greece	isoplus in Germany, Rosenheim
Hungary	isoplus in Hungary, Budapest
Iceland	isoplus in Denmark, Middelfart
Ireland	isoplus in Germany, Rosenheim
Italy	isoplus in Italy, Villamarzana
Kazakhstan	isoplus in Germany, Rosenheim
Latvia	isoplus in Germany, Rosenheim
Liechtenstein	isoplus in Switzerland, Islikon
Lithuania	isoplus in Poland, Kattowitz
Luxembourg	isoplus in Netherlands, Breda
Macedonia	isoplus in Germany, Rosenheim
Monaco	isoplus in France, Grigny
Netherlands	isoplus in the Netherlands, Breda
Norway	isoplus in Denmark, Middelfart
Poland	isoplus in Poland, Kattowitz
Portugal	isoplus in Germany, Rosenheim
Romania	isoplus in Romania, Oradea
Russia	isoplus in Germany, Rosenheim
San Marino	isoplus in France, Grigny
Sweden	isoplus in Denmark, Middelfart
Switzerland	isoplus in Switzerland, Islikon
Serbia	isoplus in Serbia, Belgrad
Slovakia	isoplus in Slovakia, Dunajská Streda
Slovenia	isoplus in Austria, Hohenberg
Spain	isoplus in Italy, Villamarzana
Ukraine	isoplus in Germany, Rosenheim
United Arab Emirates	isoplus in Austria, Hohenberg
Other international countries	isoplus in Germany, Rosenheim

1 GENERAL

1.3 isoplus - Your Plus of Safety

1.3.1 Quality-Assurance, Service, Documentation

The total isoplus-group considers Quality Assurance as very important. A management system according to DIN ISO 9001 is implemented in every isoplus-production plant, in order to assure continuously a Quality Assurance on the highest technical level. This Quality Management System includes all divisions like production and dispatch, design and project engineering, application as well as post insulation or assembly.

Condition for the realisation of this system within the isoplus-group is the systematically organisation of all procedures and their controlling day by day. All single divisions are spreading into each other and are in summary directly in charge of the general management. The general management will inspect periodically the effectiveness of the Quality-Assurance by internal reports, audits, technical and commercial documentation.

Production

The Quality Assurance, respectively Management-System according to DIN EN ISO 9001, implemented in all isoplusproduction plants is the external acting frame of quality control. Furthermore even higher degree of safety are provided for all system-materials, in order to avoid any insufficiency or defective material caused by site conditions, from the very beginning.

The production of all fittings up to DN 300 mm in high quality is included therein, as well as the general use of steel-mediumpipes in seamless wall thickness up to DN 80 mm . That means that isoplus is not only producing according to the European standards EN 253 and EN 448 but will partly exceed it essentially.

Vendor Inspection

isoplus is checking all arriving materials very detailed according to EN 253, before they may be used for production. Small quantities will be analysed in the laboratory. Approved subsuppliers have to be certified according to the guidelines of DIN EN ISO 9001 and they have to present all required, respectively necessary certificates (APZ).

Intermediate Inspection

Every collaborator of isoplus is obliged to check his work according to the valid instructions and within the sense of the company's quality politics, after the end of each working-step. Furthermore test and control procedures documented in the standards and guidelines will be carried out and documented by independent quality assurance authorities during the production procedure, as part of self-controlling.

Final Inspection

Before delivery all products have to pass a 100% final inspection. The products will be marked optically by the corresponding collaborators, respectively by the QA engineers. Only products marked with an isoplus-QA-label may be dispatched.

Construction Work

As most important part of the QA-System the supervising at building site has to be considered with priority. This will be guaranteed by various local isoplus post-insulation centres. The quality securing measures of building site procedures are carried out directly by QA division of post insulation.

The responsible and highly educated isoplus engineers, technicians, supervisors and technicians are certified by AGFW and BFW. Furthermore the investigation of excavation work and pipe laying work, controlling of the conditions for sealing works before starting of works will be part of the activities of QAassembling, as well as checking of weather conditions.

The controlling of isoplus assemblers and an individual documentation concerning the qualification of the corresponding assembler, as well as an optical or destroying test procedure of the executed work will finish various QA-assembling procedures. In order to identify the workers later on, each connection coupler will be marked durable by a special code number. Additionally investigation of the connection couplers may be carried out by members of external Institutes.

The complete Quality Assurance from entry of material until delivery of finished product, from pipe production to post insulation will be completely guaranteed by isoplus-service applications. Our design engineers will prepare your project technically and economically. Very important is to reach a most possible conformity between the schedule established for the building site and the final requirements of the project owner. Therefore isoplus offers the following service:

Design

- Detailed first information for special project requirements
- Investigation of the trench in order to optimise pipe guidance and material
- Creating tenders, material lists and design for offers
- Using of new pipe laying technologies and materials in order to improve economy
- Investigation of the provided materials and preparing of economical alternatives like isoplus-flexible-pipes or isoplus-double-pipes

Project Work

- Investigation concerning feasibility of requirements
- Establishing of trench design and creating of the required material-list
- Comparison of design-respectively requirements, with building site and production
- Checking of pipe static and approval of pipe laying according to the standards
- Permanent correspondence with owner of the project, consultants and constructing companies

Execution

- Participation at project-discussions after request
- Co-ordinated and short delivery time in order to reach an optimal project realisation
- Building site introduction with isoplus collaborators in charge
- Immediate check and approval in case of modifications including new specification
- Short time of production for eventually additional required fittings and accessories

Assembling

- Post insulation work of all connection couplers
- Assembling of expansion pads at all static required areas according to drawings
- Local Polyethylene welding for special jacket pipe parts
- Installation of IPS-leak detecting for an optimum of safety
- Self control of all assemblers by QA department

Acceptance

- Record of tightness for connection couplers
- Checking of all expansion pads and PE-welding seams
- Checking of IPS-leak-detecting and establishing of measurement record
- Acceptance with project owner or/and purchaser, locally after agreement
- Guaranty for all isoplus-products and design works
isoplus will establish on request a technical system-documentation for all delivered materials, as well as corresponding design for pipe trenches and control wires, which may be included into the total project-documentation. Such documentation documents continuous Quality Assurance of the isoplus-group and secures safety of the total district heating network, without any complaints for many decades.

The documentation will be delivered in binders. Before the documentation will be established the required extension should be known, because later on it will be not possible to integrate certain chapters. In detail the isoplus-documentation includes the following chapters, which may be completed or cancelled as requested case by case.

- General system-, material and operating description of isoplus-products
- Technical data and dimensions of materials and products
- Instructions for assembling, storage, construction work and pipe laying, as well as for postinsulation work of isoplus-components
- Total required material certificates, works and quality certificates
- IPS-Cu ${ }^{\circledR}$ or IPS-NiCr ${ }^{\circledR}$ alarm system and operation instructions, assembling instructions, start of operation and acceptance-record
- IPS-measurement records according to actual data, eventually for several sections, determined according to special measurement procedures
- Design of alarm wires of alarm system IPS-Cu ${ }^{\circledR}$ or IPS-NiCr ${ }^{\circledR}$ showing all installed system-components as black/white copy or in original (by plotter) or as PLT-file
- Connection couplers records of all post insulation works carried out by isoplus-collaborators, certified by AGFW/BFW
- Actual design of isoplus pipe-trench after pipe-laying work will be finished, based on a detailed measurement design which should be provided, no isometrics! With all required pipe-static details for buried preinsulated jacket pipes compound systems as black/white copy or original (by plotter) or as PLT-file
- Pipe-static calculations as PC-print according to given parameters as well as separated to the pipe-trench-marks, based on pipe-static-guidelines for buried preinsulated jacket pipes

In case that several documentation will be required after a project will be finished, we will work out our performance schedule after request, as this is not included in our original offer. Also parts of technical documentation including a. m. details can be established later on after request.

1 GENERAL

1.3 isoplus - Your Plus of Safety

1.3.2 Who is doing what?

Nr.	Project-Schedule				읃 $\frac{\text { I }}{\top}$ 읏	\%
1	Construction design, start of design procedure	X				
2	Customer, respectively user acquisition	X				
3	Calculation of required energy for users		X			
4	Hydraulic network-calculation resp. dimensioning		X			
5	First design		X			
6	Getting approvals from local authorities		X			
7	Measurement of designed trenches in lengths and heights		X			
8	Measurement of existing distributing lines		X			
9	Work out of trench design in lengths and heights		X			
10	Work out of material-list for the project		X			
11	Preparing of tender documents		X			
12	Dispatch of performance-description		X			
13	Price calculation of offer and placing of offer in time			X	X	X
14	Work out of project- time schedule	X	x			
15	Placing of order		X			
16	Visit of building site before start of works	X	X	X	x	X
17	Eventually second common measurement of trench after agreement				X	X
18	Work out of pipe-static calculation of buried pipes					X
19	Demonstration of pipe-static by presenting design for expansion pads					X
20	Material specification of isoplus-pipes, fittings and accessories					X
21	Equipment for building site			X	X	
22	Marking of foreign pipelines along the new trench		X	X	X	
23	Excavation of the pipeline-trench in consideration of standards and UVV			X		
24	Wall penetrations at the houses of the users			X		
25	Delivery of isoplus material					X
26	Unloading and weather proof storage of isoplus material				X	
27	Draining of pipe trench and keeping it free until refilling			X		
28	Building site instruction by isoplus representative, after request					X
29	Preparation of trench-bottom, placing of PU-bars, wooden bars or sand sacks			X		
30	Laying of isoplus pipes according to trench design in lengths and heights				X	
31	Information to isoplus in case of any modifications and wait for static acceptance		X		X	X
32	Visit of building site, discussion in order to find a solution in case of modification		X		X	X
33	Placing and connection of carrier pipes and fittings according to standard				X	
34	If necessary concrete fix-points and wait for setting			x		
35	Controlling of carrier pipe connections according to tender and standard				X	
36	Post insulation works at the jacket pipes connections					X
37	Fixing of required expansion pads in accordance to design					X
38	Eventual thermal pre-stressing (provide sand bridge)			X	X	
39	Insert wall sealing into wall penetration and concrete			X	X	
40	Acceptance of trench and approval for refilling by head of construction company	X	X			
41	Sand filling up to 100 mm above pipe-top and compressing by hand			X		
42	Filling and compressing of trench from top of sand bed			X		
43	Heat shrinking of end caps at house-connections					X
44	Installation of alarm wire-components					X
45	Removing of remaining material and leaving of building site			X	X	X
46	Handing-over of documentation and putting into operation of the line	X	X	X	X	X
47	Inspection by authorities	X	X			

This table should be considered as an example for a possible project-procedure and can be different, respectively completed, depending from the corresponding country.

2.1 General

2.1.1 Principle 2/1-2
2.1.2 Production Procedure / Heat-Insulation / Lambda-Value PUR 2/3-5
2.1.3 Capacity / Dimension / Pressure Loss. 2/6-8
2.1.4 Jacket Pipe 2/9-11
2.2 isoplus - Single Pipe
2.2.1 Carrier Pipe / Connection Technology / Operating Conditions 2 / 12
2.2.2 Dimensions resp. Types - straight pipe bar - Disconti 2/13-14
2.2.3 Dimensions resp. Types - straight pipe bar - Conti. 2/15
2.2.4 Dimensions resp. Types - Bowed Pipe / 16-17
2.2 .5 Energy Loss isoplus - Single Pipe Disconti 2 / 18
2.2.6 Energy Loss isoplus - Single Pipe Conti $2 / 19$
2.2.7 Elbow 90° $2 / 20$
2.2.8 45°-T-Branch / Parallel-Branch / 90°-Vertical-Branch 2/21-39
2.2.9 Drain / Vent - Branch $2 / 40$
2.2.10 Drain / Vent - Pipe 2 / 41
2.2.11 Reducing Piece $2 / 42-43$
2.2.12 Anchor 2 / 44
2.3 isoplus - Double Pipe
2.3.1 Advantages / Carrier pipe / Connection Technology / Operating Conditions. $2 / 45$
2.3.2 Dimensions resp. Types - straight pipe bar - Disconti $2 / 46$
2.3.3 Dimensions resp. Types - straight pipe bar - Conti $2 / 47$
2.3.4 Dimensions resp. Types - Bowed Pipe $2 / 48$
2.3.5 Energy Loss isoplus - Double Pipe Disconti 2/49
2.3.6 Energy Loss isoplus - Double Pipe Conti. 2 / 50
2.3.7 Elbow 90° $2 / 51-52$
2.3.8 Branch $90^{\circ} /$ Twin-Branch 90° 2/53-57
2.3.9 Drain / Vent 2/58
2.3.10 Reducing Piece $2 / 59$
2.3.11 Bifurcated Pipe 2/60-61

2 RIGID COMPOUND SYSTEMS

2.1 General

2.1.1 Principle

Single Pipe

isopipe ${ }^{\circledR}$-single is mainly used as energy pipe for effective lasting transportation of district heating and district cooling. Furthermore it will be used for various applications in the production technology from food stuff industry up to the oil-industry.

The isopipe ${ }^{\circledR}$-single is produced in classical and continuous method (with diffusion barrier layer).

High quality PUR-hard foam insulation - 100\% free of freon, with Cyclopentan as foaming agent, processed on modern
 machinery equipment - guarantees a permanent excellent insulation characteristic during the duration of application. The outside PEHD-jacket pipe is covering the insulatedsystem, shock resistant, break-proof and water tight. All factory produced pipes and fittings can be used easily at site as a building brick system.

Data (depending on manufacturing and nominal diameter):

- DN 20 ($3 / 4{ }^{\prime \prime}$) up to DN 1000 (40 ") in classical discontinuous production
- DN 25 (1") up to DN 200 (8") in continuous production
- Thermal conductivity λ_{50} Disconti $=0,027 \mathrm{~W} /(\mathrm{m} \bullet \mathrm{K})$ at a PUR-Density of $60 \mathrm{~kg} / \mathrm{m}^{3}$
- Thermal conductivity λ_{50} Conti $=0,024 \mathrm{~W} /(\mathrm{m} \bullet \mathrm{K})$ at a PUR-Density of $60 \mathrm{~kg} / \mathrm{m}^{3}$
- Standard insulation, 1 x or 2 x reinforced
- Operating temperature at least according to EN 253 and 25 bar pressure
- Up to $85^{\circ} \mathrm{C}$ static calculation temperature infinite in length is possible
- Carrier pipe P235TR1/TR2/GH according to EN 253, DIN EN 10217-1 or -2, DIN EN 10216-2
- Available as 6,12 or 16 m pipe bar
- IPS-Cu ${ }^{\circledR}$, IPS-NiCr ${ }^{\circledR}$ leak detection, others available

Dimensions see chapter 2.2.2, 2.2.3

Technical operation data see chapter 2.1.3, 2.2.5, 2.2.6
Material specifications jacket pipe see chapter 2.1.4
Material specifications carrier pipe see chapter 2.2.1
Material specifications PUR hard foam see chapter 7.1.7

Double Pipe

isopipe ${ }^{\circledR}$-double is an effective supplement to the single pipe and a perfect solution for the transportation of district heating and district cooling with optimized ecological and economical customer efficiency.

The isopipe ${ }^{\circledR}$-double is produced in classical and continuous method (with diffusion barrier layer).

With the construction-principle of the double pipe an optimum of insulation will be reached as one thermalblock, with the advantage that the double pipe will reach the same insulation as a $1 x$ reinforced single pipe. Spaceand cost saving by reduced trenches will additionally lower the construction expenses essentially.

Data (depending on manufacturing and nominal diameter):

- DN 20 ($3 / 4^{\prime \prime}$) up to DN 200 (8") in classical discontinuous production
- DN 25 (1") bis DN 100 (4") in continuous production
- Thermal conductivity λ_{50} Disconti $=0,027 \mathrm{~W} /(\mathrm{m} \bullet \mathrm{K})$ at a PUR-Density of $60 \mathrm{~kg} / \mathrm{m}^{3}$
- Thermal conductivity λ_{50} Conti $=0,024 \mathrm{~W} /(\mathrm{m} \bullet \mathrm{K})$ at a PUR-Density of $60 \mathrm{~kg} / \mathrm{m}^{3}$
- Standard insulation, 1 x reinforced
- Up to 90 K Spread $\left[\Delta_{\mathrm{T}}\right]$ between flow- and return-line
- Up to $70^{\circ} \mathrm{C}$ static average temperature infinite in length is possible
- Carrier pipe P235TR1/TR2/GH according to EN 253, DIN EN 10217-1 or -2
- Available as 6, 12 or 16 m pipe bar
- IPS-Cu ${ }^{\circledR}$ or IPS- $\mathrm{NiCr}^{\circledR}$ as leak detection

Dimensions see chapter 2.3.2, 2.3.3

Technical operation data see chapter 2.1.3, 2.3.5, 2.3.6
Material specifications jacket pipe see chapter 2.1.4
Material specifications carrier pipe see chapter 2.3.1
Material specifications PUR hard foam see chapter 7.1.7

2 RIGID COMPOUND SYSTEMS

2.1 General

2.1.2 Production Procedure / Heat-Insulation / Lambda-Value PUR

Production Procedure - Disconti

During the discontinuous production technique, the carrier pipe is prepared with spacers to which the leak detection wires are attached. The pre-assembled pipe is subsequently inserted into the casing pipe and the annular gap at the pipe ends is closed with foam covers. Afterwards, the foaming table must be set up at exactly the predetermined angle and the polyurethane foam must be sprayed into the lowest end of the pipe with an electronically controlled mixing head.

Following the development of preinsulated pipes, this procedure has become established as the most common production process and is listed as a technical standard in all the applicable specifications and guidelines. In principle, this is the only method that may be used in the production of moulded parts such as elbows, branches, etc.

Production Procedure - Conti

During the first step of the production line, the steel pipe rods will be mechanically coupled together. This string of pipes will then receive the leak detection wires, the polyurethane insulation layer, the diffusion barrier film, and the extruded polyethylene casing pipe in a continuous and CNC-controlled process.

The barrier film made of aluminum is coated with polyurethane treated with Corona (an electrochemical procedure for plastic surface modification) on both sides and prevents the diffusion of the polyurethane cell gases through the polyethylene casing pipe. The Corona treatment ensures that the minimum shear strength required in accordance with EN 253 is exceeded and that the basic or composite principle
 of the frictional construction method for pre-insulated pipes remains intact.
isoplus Conti-Pipes are guiding concerning their mechanical and thermal properties. The innovative production procedure guarantees a constant foam density and thickness of the PEHD-jacket pipe over the total pipe length. This will result in optimal opportunities to keep the energy efficiency of a district heating network high, respectively the heat-loss and CO_{2} emission low. The positive effects for the environment as well as for the expenses for network losses during the total lifetime are considerable.

The optimal quality of the PUR-foam will result in the best possible heat insulation of non-aged pipes. The proportion of the cell gases at λ total value is approx. 60% and is therefore the determining variable. In the case of traditionally manufactured pipes a partial exchange of the cell gases through air occurs during operation, especially with constant use temperatures $\geq 130^{\circ} \mathrm{C}$. Cyclopentan will mainly remain in the foam cells, due to it's molecular structure. However the λ-value will get more worse because of the exchange of the CO_{2}, the so called aging procedure. In order to avoid this, a diffusion barrier-foil will be installed between PUR-foam and PEHD jacket pipe. Because of this the favorable insulation properties of the pipes will remain nearly constant during the total lifetime. This is an especially important point for smaller to middle pipe dimensions in order to keep the energy efficiency of a pipe grid at its highest level.

Conti-pipes meet all requirements of EN 253 as well as AGFW -paper FW 401- certified by EuHP. When laying pipes, work must be performed with the utmost care (only tested and certified welding personnel) while implementing the carrier pipe welds. The outgoing medium can expand faster depending on the time factor and scope of any carrier pipe leakage occurring. Because of this, it cannot be ruled out that the damage profile is more extensive than for classically manufactured pipes. Naturally, attention must also be paid to a standardized pressure test and speedy start-up of the IPS-Cu ${ }^{\circledR}$ or IPS-NiCr ${ }^{\circledR}$ leak detection.

Heat-Insulation

isoplus - Compound Systems are insulated with Polyurethane-hard-foam (PUR) in especially therefore designed prescription tested according to EN 253. Polyurethane-hard foam consists of two components Polyol (component A, bright) and Isocyanat (component B, dark). Foamed continuously in the production street classical and continuous (with diffusion barrier layer) around the carrier pipe, a high quality insulation will be reached, with excellent thermal conductivity $\lambda_{50}=0,024$ (Conti) to max. $0,027 \mathrm{~W} /(\mathrm{m} \bullet \mathrm{K})$ (Disconti), at low specific weight, due to an exothermical chemical reaction.
isoplus is using generally PUR-foam which is 100 \% free of chlorofluorocarbon (CFC). Cyclopentan is exclusively used as foaming agent. That means lowest possible ODP-
 and GWP-value at extremest heat insulation quality. ODP (ozone-reducing potential) $=0$, GWP (greenhouse potential) $=<0,001$!

2 RIGID COMPOUND SYSTEMS

2.1 General

The EN 253 standard has been modified concerning the foam-density of preinsulated pipes. Now the density of $60 \mathrm{~kg} / \mathrm{m}^{3}$ is no longer strictly required. The isoplus Conti-Pipe-Technology offers the possibility to adjust the foam density exact and constant over the total pipe length. By reducing the foam density below $60 \mathrm{~kg} / \mathrm{m}^{3}$ the lambda-value (λ) can be improved. However it has to be exactly considered, that the required shearing and pressure resistance values, as well as the expected lifetime will be kept, in case of preinsulated pipes with a PUR-foam density below $60 \mathrm{~kg} / \mathrm{m}^{3}$.

The thermal conductivity is only marginally affected by reducing the density. However, the strength of the composite system and thus the operating life and durability of the district heating system is significantly reduced.
isoplus is convinced that it cannot be in the interest of the power utility companies or in the overall national economic interest to pay for minimal gains in thermal insulation with a reduction in the shear and compressive strength of the bonded system.

Lambda-Value PUR hard foam

The thermal conductivity (λ) of the polyurethane foam is generally to be determined in conformance with DIN EN ISO 8497 at $50^{\circ} \mathrm{C}\left(\lambda_{50}\right)$ average temperature. Compliance with all test parameters is ensured by awarding the audit to independent external laboratories (e.g. FFI, AMPA, etc.).

In addition to these external tests, our in-house testing laboratories are constantly carrying out further investigations into the characteristics required of the polyurethane foam. The significance of the supplementary internal tests increases with repetition, using an identical scope of testing of the same product group for the same issue and submitted for the same QM audit.

Thanks to the on-going expansion of the laboratory, isoplus is creating the possibility of significantly extending the frequency of inspection. Amongst other things, this helps us monitoring the continuous and batch production processes in a more consistent manner and improve them still further. This ensures that our stated lambda values are based on a large number of test results, which are then published as an average, using statistical methods.

External testing continues, serving as verification of our own results. This methodology ensures that our customers receive a product that meets the declared thermal conductivity $\left(\lambda_{50}\right)$.

2.1.3 Capacity / Dimension / Pressure Loss

In essence, the heat that is to be transmitted $[\mathrm{kW}]$ and the desired temperature difference [Δ_{T}] between the flow line and return line determines the pipe size. The sum of all the resistance factors [弓] of the fittings, such as branches and elbows, should be considered. For all fittings and pipes, the pressure loss is proportional to the square of the flow velocity [w]. The entire district heating system is optimised when a specific pressure drop $[\Delta \mathrm{p} / \mathrm{l}]$ of about $100 \mathrm{~Pa} / \mathrm{m}$, determined by cost calculations, can be maintained. Depending on the project, reserves for future users must be included here as well.

The sum $[\Delta p]$ of the total friction losses within the pipe network and the static pressure loss through the geodetic height differences $[\mathrm{H}]$ are decisive in pump design. The calculation of friction losses is made with the pipe friction coefficient [λ], and/or the roughness coefficient [Re] or/and the roughness number [k] of the pipe wall.
$\Delta \mathrm{p}=\lambda \cdot \frac{\mathrm{L}}{\mathrm{d}_{\mathrm{i}}} \cdot \frac{\mathrm{w}^{2} \cdot \rho}{2}+\mathrm{H} \bullet \rho[\mathrm{Pa}]$ in which $\rho=\frac{\gamma}{\mathrm{g}}\left[\gamma\right.$ in $\left.\mathrm{N} / \mathrm{m}^{3}\right] \quad \left\lvert\, \operatorname{Re}=\frac{\mathrm{w} \cdot \mathrm{di}_{\mathrm{i}}}{\mathrm{v}}[-]\right.$

In calculating the effective pipe length [L], a specific pressure drop [$\Delta \mathrm{p} / \mathrm{l}$] of $60-80 \mathrm{~Pa} / \mathrm{m}$ is to be expected as a result of increased losses due to the number of fittings. Lower values must be used if there are more fittings. The required flow or mass flow [Φ] follows from the calculated heat or current [\dot{m}] demand.

$$
\Phi=\dot{\mathrm{m}} \cdot \mathrm{c} \cdot\left(\vartheta_{V L}-\vartheta_{R L}\right)[\mathrm{kW}] \quad \left\lvert\, \dot{\mathrm{m}}=\frac{\Phi}{\mathrm{c} \cdot\left(\vartheta_{V L}-\vartheta_{R L}\right)}[\mathrm{t} / \mathrm{h}]\right.
$$

$\mathrm{w}=$ Velocity of flow [m/s]
$\mathrm{L}=$ Effective pipe length [m]
$\vartheta_{\mathrm{VL}}=$ Flow line temperature $\left[{ }^{\circ} \mathrm{C}\right]$
$\mathrm{d}_{\mathrm{i}}=$ Inside diameter of pipe [m]
$\vartheta_{\mathrm{RL}}=$ Return line temperature $\left[{ }^{\circ} \mathrm{C}\right]$
$\mathrm{H}=$ Geodetic height difference $[\mathrm{m}]$
$\rho=$ Density of the medium $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$
$\gamma=$ Specific gravity of medium $\left[\mathrm{N} / \mathrm{m}^{3}\right]$
$\mathrm{g}=$ Acceleration due to gravity $=9,81 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{v}=$ Kinematic viscosity of the medium $\left[\mathrm{m}^{2} / \mathrm{s}\right]$
$C=$ Specific heat capacity of the medium $[\mathrm{Wh} /(\mathrm{kg} \cdot \mathrm{K})]$

For an approximate calculation of the pipe diameter, the following tables may be used to calculate the dimensions. No warranty claims will be accepted. The precise determination of the nominal sizes is usually made by the engineering or design office responsible for the plumbing and heating in the project or directly by the owner, operator or power utility company.

2 RIGID COMPOUND SYSTEMS

Permissible mass flows with a pressure drop of $60-80 \mathrm{~Pa} / \mathrm{m}$ pipe length

Dimension in	Wallthickness s	$\begin{gathered} \text { Inside- } \\ \varnothing \\ \mathbf{d}_{\mathbf{i}} \end{gathered}$	mass flow $\stackrel{\circ}{\mathrm{m}}$ in t / h		Dimension in		$\begin{gathered} \text { Inside- } \\ \varnothing \\ \mathbf{d}_{\mathbf{i}} \\ \text { in } \mathrm{mm} \\ \hline \end{gathered}$	mass flow $\stackrel{\bullet}{\mathrm{m}}$ in t / h	
DN	in mm	in mm	from	to	DN			from	to
20	2,6	21,7	0,4	0,5	250	5,0	263,0	300	348
25	3,2	27,3	0,8	1,0	300	5,6	312,7	472	547
32	3,2	36,0	1,7	2,0	350	5,6	344,4	610	7,05
40	3,2	41,9	2,5	3,0	400	6,3	393,8	862	1.000
50	3,2	53,9	4,7	5,5	450	6,3	444,6	1.180	1.370
65	3,2	69,7	9,3	11,0	500	6,3	495,4	1.570	1.820
80	3,2	82,5	14,5	16,5	600	7,1	595,8	2.520	2.920
100	3,6	107,1	28,5	33,0	700	8,0	695,0	3.770	4.370
125	3,6	132,5	50,0	58,0	800	8,8	795,4	5.390	6.240
150	4,0	160,3	82,0	95,0	900	10,0	894,0	7.400	9.500
200	4,5	210,1	167,0	193,0	1000	11,0	994,0		

The mass flow specifications take into account the different numbers of fittings and fixtures, with the lower values being associated with a large proportion of such parts. The flow speed [w] is derived using the table.

$$
\mathrm{w}=\frac{\dot{\mathrm{m}}}{\left(\frac{\mathrm{~d}_{\mathrm{i}}}{2}\right)^{2} \cdot \pi \cdot 3600}[\mathrm{~m} / \mathrm{s}]
$$

The relationship between the mass flow rate and the flow speed can be taken directly from the following chart.

2 RIGID COMPOUND SYSTEMS

2.1 General

2.1.4 Jacket Pipe

PEHD

Polyethylene High Density (PEHD) is a seamless extruded highly shock-resistant and break-proof, viscoplastic hard-polyethylene up to $-50{ }^{\circ} \mathrm{C}$. General Quality requirements acc. to DIN 8075. Corona treated for optimal compound with PUR-foam, acc. to EN 253.

Dimensions respectively wall thickness at least acc. to EN 253. Test procedure of melt flow index (MFI-Group) acc. to DIN 53735 resp. ISO 1133. PEHD is a proved plastic-material, which is successfully used since many years for PE-jacket-
 pipes-systems (PJP).

Because of the resistance against nearly all chemical reactions in the soil, PEHD is excellent suitable as jacket-pipe for direct underground installation. PEHD is mentioned as the only material for jacketpipes as PE-jacket-pipe-compound-system in all national and international standards respectively guidelines. PEHD is highly resistant against weather conditions and ultraviolet rays. isoplus only uses polyethylene materials that have been treated with light stabilisers. As required by EN 253, the polyethylene pipes are very effectively protected against ultraviolet rays by adding 2.5 ± 0.5 mass \% of a special, very fine carbon black.

Due to the excellent welding characteristics of PEHD a maximum of safety and quality will be reached at the welding seams of the fittings. In case of elbow-segments these will be butt-welded by use of a butt-welding-machine. The fillet-welds of the branch-connection-piece will be carried out by use of an extruder-welding-machine.

Technical characteristics PE 80 at $20^{\circ} \mathrm{C}$		Standard	Unit	Value
$\left\lvert\, \begin{aligned} & 0 \\ & \hline \end{aligned}\right.$	Raw density ρ	DIN 8074 / DIN EN ISO 1183	kg/dm ${ }^{3}$	0,95
	Wall-Roughness k	Colebrook \& White	mm	0,007
	Melt-Index, MFR-Code T	DIN EN ISO 1133	$\mathrm{g} / 10 \mathrm{~min}$	ca. 0,45
	Melt-Index, MFR-Code V	DIN EN ISO 1133	$\mathrm{g} / 10 \mathrm{~min}$	ca. 10
	MFI-Group	DIN EN ISO 1133	---	T 005
	Material Class / Behaviour in case of fire, normal flamm.	DIN 4102	---	B 2
	Yield stress (Tensile Strength) R_{m}	DIN EN ISO 527	$\mathrm{N} / \mathrm{mm}^{2}$	23
	Yield expansion	EN 253 / DIN EN ISO 527	\%	10
	Elongation at tear	DIN EN ISO 527	\%	> 600
	Modulus of elasticity E (Tensile test)	DIN EN ISO 527 / 178	$\mathrm{N} / \mathrm{mm}^{2}$	1000
	Thrust modulation	DIN EN ISO 6721 / ISO R 537	$\mathrm{N} / \mathrm{mm}^{2}$	500-600
	Ball-pressure-hardness	DIN EN ISO 2039	$\mathrm{N} / \mathrm{mm}^{2}$	42
	Crystallite-melt-temperature	DIN EN ISO 3146	${ }^{\circ} \mathrm{C}$	ca. 130
	Vicat-distortion temperature, VST-B/50	DIN EN ISO 306	${ }^{\circ} \mathrm{C}$	ca. 72
	Stability at $200^{\circ} \mathrm{C}$	EN 253	min	> 20
	Thermal conductivity λ	DIN EN 12667	$\mathrm{W} /(\mathrm{m} \cdot \mathrm{K})$	0,40
	Specific thermal capacity c	DIN 4108 / IEC 1006	$\mathrm{KJ}(\mathrm{kg} \bullet \mathrm{K})$	1,9
	Longitudinal expansion coefficient α	DIN 53752	K^{-1}	1,8 $\cdot 10^{-4}$
$\begin{array}{\|l\|} \hline \overline{\widetilde{0}} \\ \text { 立 } \\ \frac{\alpha}{0} \\ \hline \end{array}$	Specific volume resistance	DIN/IEC 60093	$\Omega \cdot \mathrm{cm}$	$>10^{16}$
	Disruptive strength	DIN/IEC 60243	kV/mm	75
	Surface resistance	DIN/IEC 60093	Ω	$>10^{14}$

Dimensions see chapter 2.2.2 resp. 2.3.2

SPIRO

This casing pipe is made of a galvanized steel spiral-seam pipe acc. to DIN EN 12237 with external seams and is therefore only suitable for overhead pipework inside or outside buildings. In contrast to conventionally insulated overhead pipework, batchproduced SPIROFALZ casing pipe offers significant benefits.

The insulation thickness can be made significantly thinner due to the low thermal conductivity of the rigid polyurethane foam used in isoplus $\left(\lambda_{50}=0,027 \mathrm{~W} /(\mathrm{m} \bullet \mathrm{K})\right)$. This results in considerable savings in supporting structures, because the outer diameter of the pipe is reduced as well as the weight.

According to DIN 4102, the sheet-metal jacket is rated as A1 (not flammable), and the SPIROFALZ - casing pipe classified as material class B2 (flammable). Compared to the standard insulation thicknesses, differences arise when the pipes have to be insulated according to the German federal Energy Saving Regulations (EnEV). According to § 1, the EnEV only applies to service pipework within buildings and not for underground structures.

Dimensions Steel-Pipe			Delivery Length L in m	```Jacket Pipe outside diameter Da in mm```				$\begin{aligned} & \text { Weight } \\ & \text { G } \\ & \text { in } \mathrm{kg} / \mathrm{m} \\ & \hline \end{aligned}$			
Nominal Diameter / Dimension in		$\begin{gathered} \hline \text { Outside- } \\ \varnothing \\ d_{a} \\ \text { in } \mathrm{mm} \\ \hline \end{gathered}$									
				Insulation	C Class			ulation Cla			
DN	Inch			Standard	1x reinf.	$2 x$ reinf. *	EnEV	Standard	1x reinf.	$2 x$ reinf. *	
20	3/4"		26,9	6	90	110	125	90	3,27	3,79	4,20
25	$1{ }^{\prime \prime}$	33,7	6	90	110	125	90	4,10	4,61	5,03	
32	$11 / 4^{\prime \prime}$	42,4	6	110	125	140	110	5,26	5,68	6,12	
40	$11 / 2^{\prime \prime}$	48,3	6	110	125	140	110	5,70	6,11	6,55	
50	$2^{\prime \prime}$	60,3	6	125	140	160	140	6,99	7,43	8,05	
65	$2^{1 / 211}$	76,1	6	140	160	180	180	8,56	9,18	9,85	
80	$3{ }^{\prime \prime}$	88,9	6	160	180	200	200	10,07	10,74	11,45	
100	4 "	114,3	6	200	225	250	250	14,23	15,18	16,20	
125	5"	139,7	6	225	250	280	280	17,08	18,10	19,42	
150	$6{ }^{\prime \prime}$	168,3	6	250	280	315	315	21,74	23,06	26,25	
200	8"	219,1	6	315	355	400	400	32,78	35,03	37,78	
250	$10^{\prime \prime}$	273,0	6	400	450	500	450	45,55	48,87	52,45	
300	$12^{\prime \prime}$	323,9	6	450	500	560	500	58,11	61,70	66,37	
350	$14^{\prime \prime}$	355,6	6	500	560	630	500	64,89	69,56	78,58	
400	$16^{\prime \prime}$	406,4	6	560	630	-	560	81,26	90,28	-	
450	18"	457,0	6	630	-	-	630	95,76	-	-	

ATTENTION: Italicised mentioned jacket-pipe dimensions (*) are special productions. Please check availability in case of requirement. All weights given are for steel wall thicknesses of welded pipe according to isoplus, material density [ρ] P235 $=\varnothing 7,85 \mathrm{~kg} / \mathrm{dm}^{3}$, PUR-Foam $=\varnothing 0,07 \mathrm{~kg} / \mathrm{dm}^{3}$, SPIRO $=\varnothing 7,85 \mathrm{~kg} / \mathrm{dm}^{3}$ and without water.

2 RIGID COMPOUND SYSTEMS

2.1 General

Heat loss comparison overhead pipework

For overhead pipework other heat loss factors apply as shown in chapter 2.2.5 for preinsulated pipes laid in the earth. To achieve the required insulation values or thermal transmittance or U-values (k-value) in compliance with EnEV, the equivalent insulation thicknesses are calculated and determined for isoplus pipes. According to EnEV, the inner diameter of the pipe is the decisive factor.

Dimensions carrier pipe		$\begin{gathered} \hline \text { EnEV } \\ \lambda_{50} \text { insulation }=0,0370 \mathrm{~W} /(\mathrm{m} \cdot \mathrm{~K}) \end{gathered}$			$\begin{gathered} \text { isoplus SPIRO - Jacket Pipe } \\ \lambda_{50} \text { PUR-insulation }=0,027 \mathrm{~W} /(\mathrm{m} \bullet \mathrm{~K}) \end{gathered}$					
Diameter in	Inside\varnothing d_{i}	insulationlayer S_{D}	Outside\varnothing D_{a}	u-Value u_{FL} in	Jacket-Pipe-Outsidediameter \mathbf{D}_{a} in mm			ThermalTransm. Coefficient $u_{\text {FL }}$in $W /(m \bullet K)$		
DN	in mm	in mm	in mm	W/(m•K)	Standard	1x reinf.	$2 x$ reinf. *	Standard	1x reinf.	$2 x$ reinf. *
20	21,7	20	67	0,2460	90	110	125	0,1285	0,1118	0,1033
25	27,3	30	94	0,2226	90	110	125	0,1550	0,1313	0,1197
32	36,0	36	115	0,2295	110	125	140	0,1597	0,1428	0,1306
40	41,9	42	133	0,2265	110	125	140	0,1820	0,1604	0,1452
50	53,9	54	169	0,2233	125	140	160	0,2030	0,1792	0,1575
65	69,7	70	217	0,2201	140	160	180	0,2376	0,2009	0,1768
80	82,5	83	255	0,2192	160	180	200	0,2462	0,2109	0,1870
100	107,1	107	329	0,2190	200	225	250	0,2587	0,2201	0,1942
125	132,5	100	340	0,2602	225	250	280	0,2976	0,2522	0,2166
150	160,3	100	369	0,2947	250	280	315	0,3487	0,2842	0,2388
200	210,1	100	420	0,3555	315	355	400	0,3798	0,3012	0,2496
250	263,0	100	473	0,4208	400	450	500	0,3691	0,2953	0,2505
300	312,7	100	524	0,4807	450	500	560	0,4204	0,3351	0,2750
350	344,4	100	556	0,5173	500	560	630	0,4108	0,3241	0,2660
400	393,8	100	607	0,5772	560	630	-	0,4351	0,3365	-
450	444,6	100	658	0,6360	630	-	-	0,4390	-	-

Where heat is conducted through preinsulated pipes, the heat flows through different heatconducting materials: the carrier pipe, the insulation and the casing pipe. Each of these compounds has its own individual thermal conductivity [λ], depending on its chemical and physical properties. In compliance with applicable standards and guidelines, this calculation is to be carried out using a mean annual temperature $\left[T_{M}\right]$ between the medium and ambient temperature of $T_{M}=50 \mathrm{~K}$.
A mean heat transfer coefficient $[\alpha]$ of $25 \mathrm{~W} /\left(\mathrm{m}^{2} \bullet \mathrm{~K}\right)$ is assumed in accordance with VDI Guideline 2055. For the determination of thermal transmittance [u_{FL}], the following corresponding values of thermal conductivity $[\lambda]$ at $\mathrm{T}_{\mathrm{M}}=50 \mathrm{~K}$ were used:

$$
\begin{array}{lll}
\Rightarrow \text { carrier pipe P235 } & \lambda_{\text {ST }} & =54,5000 \mathrm{~W} /(\mathrm{m} \bullet \mathrm{~K}) \\
\Rightarrow \text { insulation acc. EnEV }{ }^{(1)} & \lambda_{\mathrm{DA}} & =0,0370 \mathrm{~W} /(\mathrm{m} \bullet \mathrm{~K}) \\
\Rightarrow \text { PUR-insulation acc. isoplus } & \lambda_{\text {PUR }} & =0,0270 \mathrm{~W} /(\mathrm{m} \bullet \mathrm{~K}) \\
\Rightarrow \text { SPIROFALZ jacket pipe } & \lambda_{\text {ST }} & =54,5000 \mathrm{~W} /(\mathrm{m} \bullet \mathrm{~K})
\end{array}
$$

${ }^{(1)}$ The thermal conductivity given by EnEV, $\lambda_{D A}=0,035 \mathrm{~W} /(\mathrm{m} \bullet \mathrm{K})$, refers to a mean temperature of $T_{M}=20 \mathrm{~K}$. At $T_{M}=50 \mathrm{~K}$, a suitable insulating material such as mineral wool increases $\lambda_{D A}$ to 0,037 $\mathrm{W} /(\mathrm{m} \bullet \mathrm{K})$. In other words $\lambda_{\text {PUR }}$ decreases at $\mathrm{T}_{\mathrm{M}}=20 \mathrm{~K}$ to $0,0225 \mathrm{~W} /(\mathrm{m} \bullet \mathrm{K})$.

2.2.1 Carrier Pipe / Connection Technology / Operating Conditions

Carrier pipe, welded

Welded, circular, unalloyed and calmed down steel, description and technical conditions acc. to EN 253, EN 10217-1 and -2.

Materials P235GH (1.0345), P235TR1 (1.0254), P235TR2 (1.0255). All pipes acc. to EN 10204 - 3.1 with acceptance certificate (APZ) approved. Starting from wall thickness $>3,0 \mathrm{~mm}$ with weldingseam preparation by 30° bevelled ends acc. to DIN EN ISO 9692-1.

Carrier pipe, seamless

Seamless, circular, unalloyed and calmed down steel, description and technical conditions acc. to EN 253, EN 10216-2.

Materials P235GH (1.0345), with approval certificate (APZ) acc. to EN 10204-3.1. Starting from wall thickness $>3,0 \mathrm{~mm}$ with welding-seam preparation by 30° bevelled ends acc. to DIN EN ISO 9692-1.

ATTENTION: Seamless carrier pipes only available in traditional production. In continuous production carrier pipes are exclusively welded!

Connection Technology

The joints between the steel pipes can be made using the following methods according to DIN ISO 857-1: manual arc welding, gas welding with oxygen-acetylene flame, tungsten inert gas (TIG) or a combination of processes. The testing and evaluation of the quality of the weld is according to AGFW Worksheet FW 446.

Operating Conditions

Maximum operating temperature $\mathrm{T}_{\max }:$ min. acct. to EN 253 Maximum operating pressure $\mathrm{p}_{B}:$ 25 bar Maximum permissible axial-tension $\sigma_{\max }:$ $190 \mathrm{~N} / \mathrm{mm}^{2}$ Leak detecting: IPS-Cu ${ }^{\circledR}$, IPS-NiCr ${ }^{\circledR}$ and others, at continuous production only IPS-Cu ${ }^{\circledR}$ Possible liquids: Heating water as well as other material resistant liquids					
Technical Data P235TR1/TR2/GH at $20^{\circ} \mathrm{C}$					
Property	Unit	Value	Property	Unit	Value
Volume weight p	$\mathrm{kg} / \mathrm{dm}^{3}$	7,85	Elastic modulus E	$\mathrm{N} / \mathrm{mm}^{2}$	211.800
Tensile stress R_{m}	$\mathrm{N} / \mathrm{mm}^{2}$	360-500	Thermal conductivity λ	$\mathrm{W} /(\mathrm{m} \bullet \mathrm{K})$	55,2
Yield stress R_{e}	$\mathrm{N} / \mathrm{mm}^{2}$	235	Specific heat capacity c_{m}	$\mathrm{kJ} /(\mathrm{kg} \bullet \mathrm{K})$	0,46
Wall roughness k	mm	0,02	Thermal expansion coeff. α	K^{-1}	11,3 • 10^{-6}

Carrier pipe wall thickness see chapter 2.2.2 resp. chapter 2.2.3

2 RIGID COMPOUND SYSTEMS

2.2 isoplus - Single Pipe (isopipe ${ }^{\oplus}$-Single)

2.2.2 Dimensions resp. Types - straight pipe bar - Disconti

Discontinuous production - Carrier pipe, welded

Dimensions Carrier Pipe P235TR1 / TR2 / GH						Dimensions Jacket Pipe PEHD							Weight without water G in kg / m (s acc. to isoplus)			
Type	Nominal diameter in		Outside-$\varnothing$$d_{a}$in mm	Wallthick. acc. to isoplus s in mm	Wall-thick.acc. toEN 253\mathbf{s}in mm	PEHD- Jacket Pipe Outside- $\varnothing \times$ Wall Thickness $\mathbf{D}_{\mathbf{a}} \times \mathbf{s}$ in mm										
			Insulation Class / Delivery Length Lin m			Insulation Class										
	DN	Inch				Standard	${ }_{6}{ }^{12} 116$	$161 \times$ reinforced	${ }^{6} 11216$	$62 \times$ reinf.			Stand.	1 x reinf.	2x reinf.	
DRE-20	20	3/4"		26,9	2,6	2,0	90 • 3,0	$\sqrt{ }$ - -	110 • 3,0		$125 \cdot 3,0$			2,68	3,08	3,41
DRE-25	25	1 "	33,7	3,2	2,3	$90 \cdot 3,0$	$\sqrt{ }$ - -	110 • 3,0	$\sqrt{ } \sqrt{ }$	$125 \cdot 3,0$			3,54	3,96	4,30	
DRE-32	32	11/4"	42,4	3,2	2,6	$110 \cdot 3,0$	$\sqrt{ } \sqrt{ }$	- 125 • 3,0	$\sqrt{ } \sqrt{ }$	$140 \cdot 3,0$			4,60	4,95	5,32	
DRE-40	40	11/2"	48,3	3,2	2,6	$110 \cdot 3,0$	$\sqrt{ } \sqrt{ }$	- 125 • 3,0	$\sqrt{ } \sqrt{ }$	$140 \cdot 3,0$			5,04	5,38	5,76	
DRE-50	50	2 "	60,3	3,2	2,9	125 • 3,0	$\checkmark \sqrt{ }$	- 140 • 3,0	$\checkmark \sqrt{ }$	$160 \cdot 3,0$			6,25	6,62	7,16	
DRE-65	65	21/2"	76,1	3,2	2,9	$140 \cdot 3,0$	$\checkmark \sqrt{ }$	- 160 • 3,0	$\sqrt{ } \sqrt{ }$	$180 \cdot 3,0$			7,73	8,28	8,87	
DRE-80	80	3 "	88,9	3,2	3,2	$160 \cdot 3,0$	$\sqrt{ } \sqrt{ }-$	- 180 • 3,0	$\checkmark \sqrt{ }$	$200 \cdot 3,2$			9,15	9,75	10,49	
DRE-100	100	4 "	114,3	3,6	3,6	$200 \cdot 3,2$	$\sqrt{ } \sqrt{ } \sqrt{ }$	$\sqrt{ } 225 \cdot 3,4$	$\checkmark \sqrt{ } \sqrt{ }$	250 • 3,6		\checkmark	13,23	14,24	15,35	
DRE-125	125	5 "	139,7	3,6	3,6	$225 \cdot 3,4$	$\checkmark \sqrt{ } \sqrt{ }$	$\sqrt{ } 250 \cdot 3,6$	$\checkmark \sqrt{ } \sqrt{ }$	280 • 3,9		$\checkmark \sqrt{ }$	16,09	17,20	18,72	
DRE-150	150	6 "	168,3	4,0	4,0	250 • 3,6	$\checkmark \sqrt{ } \sqrt{ }$	$\checkmark 280 \cdot 3,9$	$\checkmark \sqrt{ } \sqrt{ }$	315 • 4,1			20,77	22,29	24,15	
DRE-175*	175	$7{ }^{\prime \prime}$	193,7	4,5	-	$280 \cdot 3,9$	$\checkmark \sqrt{ } \sqrt{ }$	\checkmark 315 • 4,1	$\checkmark \downarrow \downarrow$	355 • 4,5		$\checkmark \sqrt{ }$	26,22	27,91	30,22	
DRE-200	200	$8{ }^{\prime \prime}$	219,1	4,5	4,5	315 • 4,1	$\checkmark \sqrt{ } \sqrt{ } \sqrt{ }$	\checkmark, $355 \cdot 4,5$	$\checkmark \sqrt{ } \sqrt{ } \sqrt{ }$	$400 \cdot 4,8$			30,51	33,02	36,05	
DRE-225*	225	9 "	244,5	5,0	-	355 • 4,5	$\checkmark \sqrt{ } \sqrt{ }$	$\checkmark 400 \cdot 4,8$	$\checkmark \downarrow \sqrt{ }$	450 - 5,2		$\checkmark \sqrt{ }$	37,53	40,29	43,77	
DRE-250	250	10"	273,0	5,0	5,0	$400 \cdot 4,8$	$\checkmark \sqrt{ } \sqrt{ } \sqrt{ }$	\checkmark 450 • 5,2	$\checkmark \sqrt{ } \sqrt{ }$	500 • 5,6		$\checkmark \sqrt{ }$	43,59	47,42	51,66	
DRE-300	300	12"	323,9	5,6	5,6	$450 \cdot 5,2$		$\checkmark 5000 \cdot 5,6$	$\checkmark \sqrt{ } \sqrt{ }$	560 • 6,0		$\downarrow \downarrow$	56,40	60,65	66,19	
DRE-350	350	14"	355,6	5,6	5,6	$500 \cdot 5,6$	$\checkmark \sqrt{ } \sqrt{ }$	$\checkmark 560 \cdot 6,0$	$\checkmark \sqrt{ } \sqrt{ }$	630 • 6,6	\checkmark	$\checkmark \sqrt{ }$	63,65	69,20	76,62	
DRE-400	400	16"	406,4	6,3	6,3	560 • 6,0	$\sqrt{ } \sqrt{ } \sqrt{ }$	$\sqrt{ } 630 \cdot 6,6$	$\checkmark \sqrt{ } \sqrt{ }$	670 • 6,9	\checkmark	$\checkmark \sqrt{ }$	80,57	88,00	92,55	
DRE-450	450	18"	457,0	6,3	6,3	630 • 6,6	$\checkmark \sqrt{ } \sqrt{ }$	$\checkmark 670 \cdot 6,9$	$\sqrt{ } \sqrt{ } \sqrt{ }$	710 • 7,2	\checkmark	\checkmark	93,07	97,62	102,44	
DRE-500	500	20"	508,0	6,3	6,3	670 • 6,9	$\checkmark \sqrt{ } \sqrt{ }$	$\checkmark 710 \cdot 7,2$	$\checkmark \sqrt{ } \sqrt{ }$	800 • 7,9	\checkmark	$\checkmark \sqrt{ }$	102,40	107,22	119,09	
DRE-550*	550	22"	558,8	6,3	-	$710 \cdot 7,2$	$\checkmark \sqrt{ } \sqrt{ }$	\checkmark, 800 • 7,9	$\checkmark \sqrt{ } \sqrt{ }$	$900 \cdot 8,7$	\checkmark	$\checkmark \sqrt{ }$	110,38	121,16	134,64	
DRE-600	600	24"	610,0	7,1	7,1	$800 \cdot 7,9$	$\checkmark \sqrt{ } \sqrt{ }$	$\sqrt{ } 900 \cdot 8,7$	$\checkmark \sqrt{ } \sqrt{ }$	1000 • 9,4		\checkmark	139,45	154,30	170,59	
DRE-650*	650	$26^{\prime \prime}$	660,0	7,1	-	900 • 8,7	$\checkmark \downarrow \sqrt{ }$	$\checkmark 1000 \cdot 9,4$	$\checkmark \sqrt{ } \sqrt{ }$	\checkmark -			156,34	171,09		
DRE-700	700	$28^{\prime \prime}$	711,0	8,0	8,0	900 • 8,7	$\checkmark \sqrt{ } \sqrt{ }$	$\checkmark 1000 \cdot 9,4$	$\checkmark \sqrt{ } \sqrt{ }$	\checkmark -		- -	178,93	195,23	-	
DRE-750*	750	30"	762,0	8,0	-	1000 • 9,4	$\checkmark \downarrow \sqrt{ }$	$\checkmark 1100 \cdot 10,2$	$\checkmark \sqrt{ } \sqrt{ }$,		-	197,56	214,09	-	
DRE-800	800	32"	813,0	8,8	8,8	1000 • 9,4	$\checkmark \checkmark \sqrt{ }$	$\checkmark 1100 \cdot 10,2$	$\checkmark \sqrt{ } \sqrt{ }$	\checkmark -		-	221,15	239,38	-	
DRE-850*	850	34"	864,0	8,8	-	1100 - 10,2	$\checkmark \downarrow \sqrt{ }$	$\checkmark 1200 \cdot 11,0$	$\checkmark \sqrt{ } \sqrt{ }$		-	-	241,81	259,88	-	
DRE-900	900	36"	914,0	10,0	10,0	1100 • 10,2	$\checkmark \sqrt{ } \sqrt{ }$	$\checkmark 1200 \cdot 11,0$	$\checkmark \sqrt{ } \sqrt{ }$	\checkmark	-	-	276,70	296,63	-	
DRE-1000	1000	40"	1016,0	11,0	11,0	1200 • 11,0	$\checkmark \sqrt{ } \sqrt{ }$	$\checkmark 1300 \cdot 12,5$	$\checkmark \sqrt{ } \sqrt{ }$	1	-	-	333,79	357,76	-	

ATTENTION: Italicised mentioned dimensions (*) and jacket-pipe dimensions (*) are special productions. Please check availability in case of requirement.

For nominal diameters DN 25 to DN 65 isoplus provides only steel pipes and fittings with wall thickness of $3,2 \mathrm{~mm}$! This is also to observe in comparison with competitors just as the differing standard insulation class respectively series from nominal diameter DN 250!

Length of bare steel pipe ends: $220 \mathrm{~mm} \pm 10 \mathrm{~mm}$. Wall thickness jacket pipe isoplus acc. to EN 253, Wall thickness carrier pipe isoplus acc. to AGFW FW 401. The mentioned steel wall thicknesses are corresponding with the standard wall thicknesses of isoplus, which are generally calculated against inside pressure [p] acc. to DIN 2413. The mentioned weights are valid for steel wall thicknesses acc. to isoplus, material density [p] P235 $=\varnothing 7,85 \mathrm{~kg} / \mathrm{dm}^{3}$, PUR-Foam $=\varnothing 0,07 \mathrm{~kg} / \mathrm{dm}^{3}$, PEHD $=\varnothing 0,95 \mathrm{~kg} / \mathrm{dm}^{3}$.

Specification carrier pipe see chapter 2.2.1

Discontinuous production - Carrier pipe, seamless

Dimensions carrier pipe P235GH						Dimensions jacket pipe PEHD											```Weight without water G in kg/m (s acc. to isoplus)```			
Type	Nominal Diameter / Dimension in		$\left\|\begin{array}{c} \text { Outside- } \\ \varnothing \\ \\ d_{a} \\ \text { in } \mathrm{mm} \end{array}\right\|$	Wallthickn. acc. to isoplus s in mm	Wallthickn. acc. to EN 253 s in mm	PEHD- Jacket-Pipe Outside- $\varnothing \times$ Wallthickness $\mathbf{D}_{\mathrm{a}} \times \sin \mathrm{mm}$														
			Insulation Class / Delivery Length L in m			Insulation Class														
	DN	Inch				Standard		216	6 1x reinforced				$2 \times$ reinf.				Stand.	1 x reinf.	2x re	
DRE-20	20	3/4 ${ }^{\text {" }}$		26,9	2,6	2,0	90 • 3,0			110 • 3,0				125 • 3,0				2,68	3,08	3,41
DRE-25	25	1"	33,7	3,2	2,3	$90 \cdot 3,0$	$\checkmark-$		$110 \cdot 3,0$				125 • 3,0				3,54	3,96	4,30	
DRE-32	32	11/4"	42,4	3,2	2,6	110 • 3,0	$\checkmark \checkmark$		$125 \cdot 3,0$		\checkmark		$140 \cdot 3,0$	\checkmark	\checkmark		4,60	4,95	5,32	
DRE-40	40	11/2"	48,3	3,2	2,6	110 • 3,0	$\checkmark 1$		$125 \cdot 3,0$		1		$140 \cdot 3,0$				5,04	5,38	5,76	
DRE-50	50	2 "	60,3	3,2	2,9	$125 \cdot 3,0$	$\checkmark \downarrow$		$140 \cdot 3,0$		\checkmark		$160 \cdot 3,0$				6,25	6,62	7,16	
DRE-65	65	$21 / 2^{\prime \prime}$	76,1	3,2	2,9	$140 \cdot 3,0$	$\checkmark \checkmark$		$160 \cdot 3,0$,		180 • 3,0				7,73	8,28	8,87	
DRE-80	80	$3{ }^{\prime \prime}$	88,9	3,2	3,2	$160 \cdot 3,0$	$\checkmark \checkmark$	\checkmark	$180 \cdot 3,0$		\checkmark		$200 \cdot 3,2$		\checkmark		9,15	9,75	10,49	
DRE-100	100	4 "	114,3	3,6	3,6	$200 \cdot 3,2$			$225 \cdot 3,4$		\checkmark		250 • 3,6		,		13,23	14,24	15,35	
DRE-125	125	5 "	139,7	4,0	3,6	$225 \cdot 3,4$	$\checkmark \checkmark$	\checkmark	250 • 3,6				$280 \cdot 3,9$	\checkmark	,		17,39	18,51	20,03	
DRE-150	150	6 "	168,3	4,5	4,0	250 • 3,6	$\checkmark 1$	\checkmark	$280 \cdot 3,9$		\checkmark		$315 \cdot 4,1$	\checkmark	,		22,74	24,26	26,12	
DRE-200	200	$8{ }^{\prime \prime}$	219,1	6,3	4,5	315 • 4,1		\checkmark -	355 • 4,5	\checkmark	,		$400 \cdot 4,8$	\checkmark	,		39,78	42,29	45,32	
DRE-250	250	10"	273,0	6,3	5,0	$400 \cdot 4,8$		1	450 • 5,2				$500 \cdot 5,6$	\checkmark	\checkmark		52,01	55,83	60,08	
DRE-300	300	12"	323,9	7,1	5,6	450 • 5,2		V-	$500 \cdot 5,6$	\checkmark	\checkmark		560 • 6,0		\checkmark		67,94	72,19	77,74	
DRE-350	350	14"	355,6	8,0	5,6	$500 \cdot 5,6$	$\checkmark \checkmark$	\checkmark -	560 •6,0	1	\checkmark		630 • 6,6	\checkmark	\checkmark		83,95	89,49	96,92	
DRE-400	400	16"	406,4	8,8	6,3	560 • 6,0	$\checkmark \checkmark$	\checkmark -	$630 \cdot 6,6$	\checkmark	\checkmark		$670 \cdot 6,9$	\checkmark	\checkmark		104,76	112,18	116,73	
DRE-450	450	18"	457,0	10,0	6,3	630 • 6,6	$\checkmark \checkmark$	V	670 •6,9	\checkmark	\checkmark		710 • 7,2	\checkmark	\checkmark		133,38	137,93	142,75	
DRE-500	500	20"	508,0	11,0	6,3	670 • 6,9	$\checkmark \checkmark$		710 • 7,2	\checkmark	\checkmark		$800 \cdot 7,9$	\checkmark	\checkmark		159,42	164,24	176,11	
DRE-600	600	24"	610,0	12,5	7,1	$800 \cdot 7,9$, 1	1	900 • 8,7		,		1000 • 9,4	\checkmark	\checkmark		218,27	233,12	249,42	

ATTENTION: Italicised mentioned dimensions (*) and jacket-pipe dimensions (*) are special productions. Please check availability in case of requirement.
For nominal diameters DN 25 to DN 65 isoplus provides only steel pipes and fittings with wall thickness of $3,2 \mathrm{~mm}$! This is also to observe in comparison with competitors just as the differing standard insulation class respectively series from nominal diameter DN 250!
Length of bare steel pipe ends: $220 \mathrm{~mm} \pm 10 \mathrm{~mm}$. Wall thickness jacket pipe isoplus acc. to EN 253, Wall thickness carrier pipe isoplus acc. to AGFW FW 401. The mentioned steel wall thicknesses are corresponding with the standard wall thicknesses of isoplus, which are generally calculated against inside pressure [p] acc. to DIN 2413. The mentioned weights are valid for steel wall thickness acc. to isoplus, material density [ρ] P235 $=\varnothing 7,85 \mathrm{~kg} / \mathrm{dm}^{3}$, PUR-Foam $=\varnothing 0,07 \mathrm{~kg} / \mathrm{dm}^{3}$, PEHD $=\varnothing 0,95 \mathrm{~kg} / \mathrm{dm}^{3}$.

2 RIGID COMPOUND SYSTEMS

2.2 isoplus - Single Pipe (isopipe ${ }^{\circledR}$-Single)

2.2.3 Dimensions resp. Types - straight pipe bar - Conti

Continuous production - Carrier pipe, welded

Dimensions Carrier Pipe P235TR1 / TR2 / GH						Dimensions Jacket pipe PEHD											```Weight without water G in kg/m (s acc. to isoplus)```			
Type	Nominal Diameter / Dimension in		$\begin{array}{\|c} \hline \text { Outside } \\ \varnothing \\ \\ d_{a} \\ \text { in } \mathrm{mm} \\ \hline \end{array}$	Wallthick. acc. to isoplus s in mm	Wall-thick.acc. toEN 253\mathbf{s}in mm	PEHD- Jacket-Pipe Outside- $\varnothing \times$ Wall thickness $\mathbf{D}_{\mathrm{a}} \times \mathbf{s}$ in mm														
			Insulation Class / Delivery Length L in m			Insulation Class														
	DN	Inch				Standard	6112		1x reinforced				2x reinf.		-		Stand.	1x reinf.	2x rein	
KRE-25	25	1"		33,7	3,2	2,3		--		110 • 3,0				$125 \cdot 3,0$		\checkmark			3,86	4,19
KRE-32	32	11/4"	42,4	3,2	2,6	$110 \cdot 3,0$	- V		$125 \cdot 3,0$				$140 \cdot 3,0$		\checkmark		4,49	4,83	5,18	
KRE-40	40	11/2"	48,3	3,2	2,6	$110 \cdot 3,0$	- V		$125 \cdot 3,0$				$140 \cdot 3,0$				4,91	5,24	5,61	
KRE-50	50	2 "	60,3	3,2	2,9	$125 \cdot 3,0$	- v		$140 \cdot 3,0$				$160 \cdot 3,0$,		4,98	6,45	6,97	
KRE-65	65	21/2"	76,1	3,2	2,9	$140 \cdot 3,0$	- v		$160 \cdot 3,0$				$180 \cdot 3,0$,		7,53	8,06	8,63	
KRE-80	80	$3{ }^{\prime \prime}$	88,9	3,2	3,2	$160 \cdot 3,0$	- v		$180 \cdot 3,0$				200 • 3,2		\checkmark		8,91	9,49	10,62	
KRE-100	100	4"	114,3	3,6	3,6	$200 \cdot 3,2$	-	\checkmark	$225 \cdot 3,4$			\checkmark	$250 \cdot 3,6$		\checkmark		13,29	14,20	15,32	
KRE-125	125	5 "	139,7	3,6	3,6	$225 \cdot 3,4$	- -		$250 \cdot 3,6$	-		\checkmark	280 • 3,9		\checkmark		16,00	17,13	18,57	
KRE-150	150	6 "	168,3	4,0	4,0	250 • 3,6	- v		$280 \cdot 3,9$	-	\checkmark	\checkmark	315 • 4,1		\checkmark		20,60	22,05	24,14	
KRE-200	200	8"	219,1	4,5	4,5	315 • 4,1	- 1		355 • 4,5								30,34	33,14	-	

ATTENTION: Italicised mentioned dimensions (*) and jacket-pipe dimensions (*) are special productions. Please check availability in case of requirement.

For nominal diameters DN 25 to DN 65 isoplus provides only steel pipes and fittings with wall thickness of $3,2 \mathrm{~mm}$! This is also to observe in comparison with competitors just as the differing standard insulation class respectively series from nominal diameter DN 250!

Length of bare steel pipe ends: $220 \mathrm{~mm} \pm 10 \mathrm{~mm}$. Wall thickness jacket pipe isoplus acc. to EN 253, Wall thickness carrier pipe isoplus acc. to AGFW FW 401. The mentioned steel wall thicknesses are corresponding with the standard wall thicknesses of isoplus, which are generally calculated against inside pressure [p] acc. to DIN 2413. The mentioned weights are valid for steel wall thickness acc. to isoplus, material density [ρ] P235 $=\varnothing 7,85 \mathrm{~kg} / \mathrm{dm}^{3}$, PUR-Foam $=\varnothing 0,07 \mathrm{~kg} / \mathrm{dm}^{3}$, PEHD $=\varnothing 0,95 \mathrm{~kg} / \mathrm{dm}^{3}$.

Specification carrier pipe see chapter 2.2.1 2 RIGID COMPOUND SYSTEMS 2.2 isoplus - Single Pipe (isopipe ${ }^{\circledR}$-Single)

2.2.4 Dimensions resp. Types - Bowed Pipe

Discontinuous and continuous production

Dimensions Carrier pipe		Maximum permissible bow-angle$\qquad$$\alpha_{\max }$$\text { in }{ }^{\circ}$	Minimum bendingradius $\mathbf{r}_{\text {F min }}$ in m	Circle segment at $\mathrm{r}_{\mathrm{F} \text { min }}$ and 12,00 m		
Nominal- Diameter in DN	```Outside- \varnothing da in mm```			```Secant- length s in m```	Production secantlength \mathbf{s}_{hF} in m	```Tangent- length tL in m```
100	114,3	28,0	16,78	11,78	0,97	6,07
125	139,7	28,0	16,78	11,78	0,97	6,07
150	168,3	25,0	18,80	11,83	0,87	6,06
200	219,1	22,5	20,88	11,86	0,78	6,05
250	273,0	20,0	23,49	11,89	0,70	6,04
300	323,9	18,0	26,10	11,91	0,63	6,03
350	355,6	12,0	28,65	11,96	0,42	6,01
400	406,4	6,5	52,89	11,99	0,23	6,00
450	457,0	5,0	68,75	11,99	0,17	6,00
500	508,0	4,0	85,94	12,00	0,16	6,00

Smaller dimensions available on request!
The single pipe / bowed pipe production used at the factory is only possible with a high density polyethylene jacket in 12 m lengths and only above a nominal diameter of DN 100. The values given in the table are valid regardless of the PEHD casing pipe diameter (standard, 1x or 2 x reinforced). For nominal diameters DN 20 to DN 80, it is usually sufficient to compensate for pipe elbows with on-site bending (elastic distortion of a pipe length).

Due to production constraints, bowed pipes of up to PEHD casing pipe diameters $\mathbf{D}_{\mathrm{a}} \leq 450 \mathrm{~mm}$ have $2,0 \mathrm{~m}$ long straight pipe ends, while from $\mathbf{D}_{a} \geq 500$ these ends are approximately $3,0 \mathrm{~m}$ long. For this reason, the production bending radius $\left[r_{\mathbf{F}}\right]$ is also different from the design radius $\left[\mathbf{r}_{\mathbf{P}}\right]$.

Bowed pipes are bent mechanically according to the route of the pipeline and the permitted production bending radius, according to local management instructions (bending angle and design radius). When ordering, the angle, design radius and bending direction, left or right (depending on the route of the network monitoring) should be given. If necessary, these parameters are determined by isoplus.

2 RIGID COMPOUND SYSTEMS

2.2 isoplus - Single Pipe (isopipe ${ }^{\oplus}$-Single)

Context between project planning radius $\left[r_{\mathrm{P}}\right]$ and production bending radius $\left[\mathrm{r}_{\mathrm{F}}\right]$

General parameter			Project planning parameter			2 m pipe end straight		3 m pipe end straight	
$\begin{gathered} \hline \text { Angle } \\ \alpha \\ \text { in }^{\circ} \end{gathered}$	$\begin{gathered} \hline \text { Segment } \\ s_{\mathbf{L}} \\ \text { in } \mathrm{m} \end{gathered}$	Tangent $\boldsymbol{t}_{\mathrm{L}}$ in m	$\begin{gathered} \hline \text { Height } \\ \mathbf{h}_{\mathbf{p}} \\ \text { in } \mathrm{m} \\ \hline \end{gathered}$	$\begin{gathered} \text { Radius } \\ \mathbf{r}_{\mathbf{p}} \\ \text { in } \mathrm{m} \end{gathered}$	$\underset{\substack{\mathbf{s}_{\mathrm{hp}} \\ \text { in } \\ \text { Segment }}}{ }$	$\begin{gathered} \text { Radius } \\ \mathbf{r}_{\mathbf{F} 2} \\ \text { in } \mathrm{m} \\ \hline \end{gathered}$	Segment $\mathrm{s}_{\mathrm{hF} 2}$ in m	$\begin{gathered} \hline \text { Radius } \\ \mathbf{r}_{\mathrm{F} 3} \\ \text { in } \mathrm{m} \\ \hline \end{gathered}$	Segment $\mathrm{s}_{\mathrm{hF} 3}$ in m
40	11,56	6,15	2,10	16,90	1,02	11,40	1,37	8,65	1,55
39	11,58	6,14	2,05	17,34	0,99	11,70	1,34	8,87	1,51
38	11,60	6,13	2,00	17,82	0,97	12,01	1,31	9,10	1,47
37	11,62	6,13	1,94	18,31	0,95	12,33	1,27	9,35	1,43
36	11,64	6,12	1,89	18,84	0,92	12,68	1,24	9,60	1,40
35	11,66	6,11	1,84	19,39	0,90	13,04	1,21	9,87	1,36
34	11,68	6,11	1,79	19,97	0,87	13,43	1,17	10,16	1,32
33	11,70	6,10	1,73	20,59	0,85	13,84	1,14	10,47	1,28
32	11,72	6,09	1,68	21,25	0,82	14,28	1,10	10,79	1,24
31	11,73	6,09	1,63	21,95	0,80	14,74	1,07	11,13	1,21
30	11,75	6,08	1,57	22,70	0,77	15,24	1,04	11,50	1,17
29	11,77	6,08	1,52	23,50	0,75	15,76	1,00	11,90	1,13
28	11,78	6,07	1,47	24,35	0,72	16,33	0,97	12,32	1,09
27	11,80	6,07	1,42	25,27	0,70	16,94	0,93	12,77	1,05
26	11,81	6,06	1,36	26,25	0,67	17,59	0,90	13,26	1,01
25	11,83	6,06	1,31	27,32	0,65	18,30	0,87	13,79	0,98
24	11,84	6,05	1,26	28,47	0,62	19,06	0,83	14,36	0,94
23	11,85	6,05	1,21	29,73	0,60	19,90	0,80	14,98	0,90
22,5	11,86	6,05	1,18	30,39	0,58	20,34	0,78	15,31	0,88
22	11,87	6,04	1,15	31,09	0,57	20,80	0,76	15,66	0,86
21	11,88	6,04	1,10	32,59	0,55	21,80	0,73	16,40	0,82
20	11,89	6,04	1,05	34,23	0,52	22,89	0,70	17,22	0,78
19	11,90	6,03	1,00	36,05	0,49	24,10	0,66	18,12	0,74
18	11,91	6,03	0,94	38,07	0,47	25,44	0,63	19,12	0,70
17	11,92	6,03	0,89	40,32	0,44	26,94	0,59	20,25	0,67
16	11,93	6,02	0,84	42,86	0,42	28,62	0,56	21,51	0,63
15	11,94	6,02	0,79	45,73	0,39	30,54	0,52	22,94	0,59
14	11,95	6,02	0,73	49,01	0,37	32,72	0,49	24,58	0,55
13	11,95	6,02	0,68	52,79	0,34	35,24	0,45	26,46	0,51
12	11,96	6,01	0,63	57,21	0,31	38,18	0,42	28,67	0,47
11	11,97	6,01	0,58	62,42	0,29	41,65	0,38	31,27	0,43
10	11,97	6,01	0,52	68,68	0,26	45,82	0,35	34,39	0,39
9	11,98	6,01	0,47	76,33	0,24	50,92	0,31	38,21	0,35
8	11,98	6,01	0,42	85,89	0,21	57,28	0,28	42,98	0,31
7	11,99	6,00	0,37	98,17	0,18	65,47	0,24	49,12	0,27
6,5	11,99	6,00	0,34	105,73	0,17	70,51	0,23	52,90	0,26
6	11,99	6,00	0,31	114,55	0,16	76,39	0,21	57,30	0,24
5	11,99	6,00	0,26	137,47	0,13	91,67	0,17	68,76	0,20
4	12,00	6,00	0,21	171,86	0,10	114,59	0,14	85,95	0,16

${ }_{i s}$ Oplus

 2 RIGID COMPOUND SYSTEMS 2.2 isoplus - Single Pipe (isopipe ${ }^{\circledR}$-Single)
2.2.5 Energy Loss isoplus - Single Pipe Disconti

Thermal Transmission Coefficient [$\mathrm{U}_{\text {DRE }}$] resp. K-Value

The mentioned values are based on an average specific thermal capacity [c_{m}] of the water of $4.187 \mathrm{~J} /(\mathrm{kg} \bullet \mathrm{K})$. A soil covering $\left[\mathrm{U}_{\mathrm{H}}\right]$ of $0,80 \mathrm{~m}$ (upper edge jacket-pipe to upper edge of the terrain), a thermal conductivity of the soil $\left[\lambda_{\mathrm{E}}\right]$ of $1,2 \mathrm{~W} /(\mathrm{m} \bullet \mathrm{K})$, an average soil temperature $\left[T_{E}\right]$ of 10° Cas well as on an average clearance pipe distance of 150 mm in case of single pipes, see chapter 2.2.2 and 2.2.3.

Average temperature:
$\mathrm{T}_{\mathrm{M}}=\left(\mathrm{T}_{\mathrm{VL}}+\mathrm{T}_{\mathrm{RL}}\right): 2-\mathrm{T}_{\mathrm{E}}[\mathrm{K}]$

Example:
$\mathrm{T}_{\mathrm{M}}=\left(90^{\circ}+70^{\circ}\right): 2-10^{\circ}=70 \mathrm{~K}$

Type	Jacket-Pipe OutsideDiameter $\mathbf{D}_{\mathbf{a}}$ in mm			Thermal Transm. Coefficient$\begin{gathered} u_{\text {DRE }} \\ \text { in } W /(\mathrm{m} \bullet \mathrm{~K}) \end{gathered}$		
	Insulation Class			Insulation Class		
	Standard	1x reinf.	2x reinf.	Standard	1x reinf.	2x reinf.
DRE-20	90	110	125	0,1337	0,1149	0,1056
DRE-25	90	110	125	0,1625	0,1356	0,1228
DRE-32	110	125	140	0,1661	0,1473	0,1339
DRE-40	110	125	140	0,1904	0,1661	0,1493
DRE-50	125	140	160	0,2122	0,1855	0,1617
DRE-65	140	160	180	0,2489	0,2078	0,1815
DRE-80	160	180	200	0,2566	0,2177	0,1939
DRE-100	200	225	250	0,2720	0,2285	0,2004
DRE-125	225	250	280	0,3132	0,2627	0,2239
DRE-150	250	280	315	0,3692	0,2968	0,2473
DRE-200	315	355	400	0,4017	0,3154	0,2595
DRE-250	400	450	500	0,3910	0,3092	0,2606
DRE-300	450	500	560	0,4492	0,3535	0,2876
DRE-350	500	560	630	0,4389	0,3417	0,2775
DRE-400	560	630	670	0,4674	0,3550	0,3156
DRE-450	630	670	710	0,4711	0,4041	0,3561
DRE-500	670	710	800	0,5395	0,4573	0,3481
DRE-600	800	900	1000	0,5574	0,4022	0,3221
DRE-700	900	1000	-	0,6317	0,4543	-
DRE-800	1000	1100	-	0,7088	0,5080	-
DRE-900	1100	1200	-	0,7823	0,5604	-
DRE-1000	1200	1300	-	0,8615	0,6136	-

Energy Loss [q] at \mathbf{T}_{M} in W/Pipe Meter

Type	Heat Loss \mathbf{q} at average temperature $\mathbf{T}_{\mathbf{M}}=100 \mathrm{~K}$ in W/m			Heat Loss \mathbf{q} at average temperature $\mathbf{T}_{\mathrm{M}}=70 \mathrm{~K}$ in W / m			Heat Loss \mathbf{q} at average temperature $\mathbf{T}_{\mathbf{M}}=50 \mathrm{~K}$ in W / m		
	Insulation Class			Insulation Class			Insulation Class		
	Standard	1x reinf.	2x reinf.	Standard	1x reinf.	2x reinf.	Standard	1 x reinf.	2x reinf.
DRE-20	13,367	11,493	10,559	9,357	8,045	7,391	6,683	5,746	5,279
DRE-25	16,253	13,563	12,282	11,377	9,494	8,597	8,126	6,782	6,141
DRE-32	16,614	14,731	13,393	11,630	10,312	9,375	8,307	7,365	6,697
DRE-40	19,045	16,610	14,929	13,331	11,627	10,450	9,522	8,305	7,464
DRE-50	21,221	18,552	16,169	14,855	12,986	11,318	10,611	9,276	8,084
DRE-65	24,885	20,777	18,148	17,420	14,544	12,704	12,443	10,389	9,074
DRE-80	25,664	21,768	19,386	17,965	15,238	13,571	12,832	10,884	9,693
DRE-100	27,198	22,854	20,043	19,038	15,998	14,030	13,599	11,427	10,022
DRE-125	31,321	26,272	22,388	21,925	18,391	15,672	15,661	13,136	11,194
DRE-150	36,922	29,685	24,727	25,846	20,779	17,309	18,461	14,842	12,364
DRE-200	40,173	31,540	25,948	28,121	22,078	18,164	20,086	15,770	12,974
DRE-250	39,103	30,923	26,063	27,372	21,646	18,244	19,552	15,462	13,032
DRE-300	44,922	35,348	28,758	31,446	24,743	20,131	22,461	17,674	14,379
DRE-350	43,886	34,167	27,746	30,720	23,917	19,422	21,943	17,083	13,873
DRE-400	46,735	35,498	31,556	32,715	24,849	22,089	23,368	17,749	15,778
DRE-450	47,109	40,409	35,612	32,976	28,287	24,929	23,555	20,205	17,806
DRE-500	53,949	45,726	34,810	37,764	32,008	24,367	26,975	22,863	17,405
DRE-600	55,738	40,224	32,214	39,017	28,157	22,550	27,869	20,112	16,107
DRE-700	63,173	45,431	-	44,221	31,802	-	31,587	22,716	-
DRE-800	70,876	50,798	-	49,614	35,559	-	35,438	25,399	-
DRE-900	78,228	56,042	-	54,759	39,229	-	39,114	28,021	-
DRE-1000	86,153	61,358	-	60,307	42,951	-	43,076	30,679	-

2 RIGID COMPOUND SYSTEMS

2.2 isoplus - Single Pipe (isopipe ${ }^{\oplus}$-Single)

2.2.6 Energy Loss isoplus - Single Pipe Conti

Thermal Transmission Coefficient [$\mathrm{U}_{\text {KRE }}$] resp. K-Value

The mentioned values are based on an average specific thermal capacity [c_{m}] of the water of $4.187 \mathrm{~J} /(\mathrm{kg} \bullet \mathrm{K})$. A soil covering [\ddot{U}_{H}] of $0,80 \mathrm{~m}$ (upper edge jacket-pipe to upper edge of the terrain), a thermal conductivity of the soil $\left[\lambda_{\mathrm{E}}\right]$ of $1,2 \mathrm{~W} /(\mathrm{m} \bullet \mathrm{K})$, an average soil temperature [T_{E}] of 10° Cas well as on an average clearance pipe distance of 150 mm in case of single pipes, see chapter 2.2.2 and 2.2.3.

Type	Jacket-Pipe OutsideDiameter $\mathbf{D}_{\mathbf{a}}$ in mm			Thermal Transm. Coefficient $U_{\text {KER }}$ in $W /(m \bullet K)$		
	Insulation Class			Insulation Class		
	Standard	1 x reinf.	2x reinf.	Standard	1x reinf.	2x reinf.
KRE-25	-	110	125	-	0,1198	0,1086
KRE-32	110	125	140	0,1466	0,1301	0,1184
KRE-40	110	125	140	0,1679	0,1466	0,1319
KRE-50	125	140	160	0,1869	0,1636	0,1428
KRE-65	140	160	180	0,2189	0,1831	0,1602
KRE-80	160	180	200	0,2257	0,1918	0,1696
KRE-100	200	225	250	0,2329	0,1976	0,1741
KRE-125	225	250	280	0,2681	0,2265	0,1943
KRE-150	250	280	315	0,3145	0,2556	0,2137
KRE-200	315	355	-	0,3413	0,2702	-

Average Temperature:
$T_{M}=\left(T_{V L}+T_{R L}\right): 2-T_{E}[K]$

Example:
$\mathrm{TM}=\left(90^{\circ}+70^{\circ}\right): 2-10^{\circ}=70 \mathrm{~K}$

Energy Loss [q] at T_{M} in W/Pipe Meter

Type	Heat Loss \mathbf{q} at average temperature $\mathbf{T}_{\mathbf{M}}=100 \mathrm{~K}$ in W / m			Heat Loss \mathbf{q} at average temperature $\mathrm{T}_{\mathrm{M}}=70 \mathrm{~K}$ in W / m			Heat Loss \mathbf{q} at average temperature $\mathbf{T}_{\mathbf{M}}=50 \mathrm{~K}$ in W / m		
	Insulation Class			Insulation Class			Insulation Class		
	Standard	1x reinf.	2x reinf.	Standard	1x reinf.	2x reinf.	Standard	1x reinf.	2x reinf.
KRE-25	-	11,984	10,859	-	8,389	7,601	-	5,992	5,430
KRE-32	14,660	13,011	11,838	10,262	9,108	8,287	7,330	6,505	5,919
KRE-40	16,786	14,659	13,187	11,750	10,261	9,231	8,393	7,329	6,593
KRE-50	18,691	16,362	14,277	13,084	11,453	9,994	9,345	8,181	7,139
KRE-65	21,889	18,312	16,016	15,322	12,819	11,211	10,945	9,156	8,008
KRE-80	22,574	19,183	16,955	15,802	13,428	11,869	11,287	9,592	8,478
KRE-100	23,287	19,760	17,405	16,301	13,832	12,184	11,644	9,880	8,703
KRE-125	26,809	22,652	19,428	18,766	15,856	13,600	13,405	11,326	9,714
KRE-150	31,451	25,562	21,373	22,016	17,893	14,961	15,726	12,781	10,686
KRE-200	34,134	27,024	-	23,894	18,917	-	17,067	13,512	-

2 RIGID COMPOUND SYSTEMS 2.2 isoplus - Single Pipe (isopipe ${ }^{\circledR}$-Single)

2.2.7 Elbow 90°

All carrier pipe elbows at least bent according to DIN EN 10220 in one piece or in accordance with DIN EN 10253-2 and welded pipe fittings, depending on dimension. From wall thickness > 3,0 mm with weld seam preparation by 30° bevelled ends acc. to DIN EN ISO 9692-1.

Dimensions Carrier Pipe			Carrier Pipe Elbow		Jacket-Pipe-Outsidediameter $\mathbf{D}_{\mathbf{a}}$ in mm			Length of Angle $L \cdot L_{1}$ in mm		
Nominal Diameter / Dimension in		$\begin{aligned} & \text { Outside- } \\ & \quad \varnothing \\ & \mathbf{d}_{\mathbf{a}} \\ & \text { in } \mathrm{mm} \end{aligned}$	Wall thickness s in mm	Radius r in mm						
		Insulation Class								
DN	Inch				Standard	1x reinf.	2x reinf. *			
20	3/4"		26,9	2,6	110,0	90	110	125		000
25	$1^{\prime \prime}$	33,7	3,2	110,0	90	110	125		000	
32	11/4"	42,4	3,2	110,0	110	125	140		000	
40	$11 / 2^{\prime \prime}$	48,3	3,2	110,0	110	125	140		000	
50	2 "	60,3	3,2	135,0	125	140	160	100	000	
65	21/2"	76,1	3,2	175,0	140	160	180	100	000	
80	$3{ }^{\text {a }}$	88,9	3,2	205,0	160	180	200		000	
100	4"	114,3	3,6	270,0	200	225	250	100	000	
125	5"	139,7	3,6	330,0	225	250	280	1000 - 1000	$1000 \cdot 1500$	
150	6	168,3	4,0	390,0	250	280	315	1000 - 1000	$1000 \cdot 1500$	
200	8"	219,1	4,5	510,0	315	355	400	$1000 \cdot 1000$	$1000 \cdot 1500$	
250	10"	273,0	5,0	381,0	400	450	500	$1000 \cdot 1000$	1000 - 1500	
300	12"	323,9	5,6	457,0	450	500	560	$1000 \cdot 1000$	$1000 \cdot 1500$	
350	14"	355,6	5,6	533,0	500	560	630	$1000 \cdot 1000$	$1000 \cdot 1500$	
400	16"	406,4	6,3	610,0	560	630	670	$1000 \cdot 1000$	$1000 \cdot 1500$	
450	18"	457,0	6,3	686,0	630	670	710	$1100 \cdot 1100$	1100-1500	
500	20"	508,0	6,3	762,0	670	710	800	$1200 \cdot 1200$	$1200 \cdot 1500$	
600	24"	610,0	7,1	914,0	800	900	1000		250*	
700	28"	711,0	8,0	1067,0	900	1000	-		400 *	
800	32"	813,0	8,8	1219,0	1000	1100	-		600 *	
900	36"	914,0	10,0	1372,0	1100	1200	-		900 *	
1000	40"	1016,0	11,0	1524,0	1200	1300	-	200	000 *	

ATTENTION: Italicised mentioned jacket-pipe dimensions (*) and length of angles (*) are special products resp. minimum length. Please check availability in case of requirement. This also applies to complementary angles $[\alpha]<90^{\circ}$. Elbows with an angle length of 1,5 m are used in applications where preformed part is welded to preformed part and sliding up a coupler is otherwise not possible. It's also possible to use as house entry elbow.

The mentioned steel wall thicknesses are corresponding to the minimum requirements acc. to the standard respectively to the norm wall thicknesses of isoplus. These are generally calculated against inside pressure [p$]$ acc. to DIN 2413. Length of bare steel pipe ends: $220 \mathrm{~mm} \pm 10 \mathrm{~mm}$. Orders of special degree elbows should generally indicate the complementary angle $[\alpha]$.
Material specifications jacket pipe see chapter 2.1.4
Material specifications carrier pipe see chapter 2.2.1
Material specifications PUR hard foam see chapter 7.1.7

2 RIGID COMPOUND SYSTEMS

2.2 isoplus - Single Pipe (isopipe ${ }^{\oplus}$-Single)

2.2.8 45 ${ }^{\circ}$-T-Branch / Parallel-Branch / 90o-Vertical-Branch

45° T-Branch

Vertical-Branch

Parallel-Branch

T-Piece acc. to DIN EN 10253-2

Carrier pipe inside diameter and exit with appropriate wall thickness according to the pipe bars. Pipe elbows 45° - respectively 90° at branch depending on dimension at least acc. to DIN EN 10220 bowed in one piece or with pipe elbow acc. to DIN 10253-2 and welded pipe socket. From wall thickness > 3,0 mm with weld seam preparation by 30° bevelled ends acc. to DIN EN ISO 9692-1. Length of bare steel pipe ends: $220 \mathrm{~mm} \pm 10 \mathrm{~mm}$.

Depending on the nominal diameter, all branches are flared in the ground or with welded T-joints in compliance with DIN EN 10253-2, with appropriate wall thickness according to the pipe bars. The subsequent elbow or pipe cylinder is welded with a lap seam, which can be irradiated. Cylindrical tubes are seamless or welded steel depending on dimension.

Material specification jacket pipe see chapter 2.1.4
Material specification carrier pipe see chapter 2.2.1
Material specification PUR-hard foam see chapter 7.1.7 2 RIGID COMPOUND SYSTEMS 2.2 isoplus - Single Pipe (isopipe ${ }^{\circledR}$-Single)

45°-T-Branch / Insulation Class Standard

Dimensions Insulation Class Standard

	Transmission respectively main pipe dimensions																					
	DN		20		25		32		40		50		65		80		100		125		150	
	Inch		3/4*		1"		$11 / 2^{\prime \prime}$		$11 / 4^{\prime \prime}$		2 "		$21 / 2^{\prime \prime}$		3 "		4 "		5"		6 "	
	d_{a}		26,9		33,7		42,4		48,3		60,3		76,1		88,9		114,3		139,7		168,3	
	s		2,6		3,2		3,2		3,2		3,2		3,2		3,2		3,6		4,0		4,5	
DN	D_{a}		90		90		110		110		125		140		160		200		225		250	
20	L	L1	1100	695	1100	695	1100	705	1100	705	1100	710	1100	720	1100	730	1100	750	1100	760	1100	775
	h	H	70	160	70	160	70	170	70	170	70	180	70	185	70	195	70	215	70	230	70	240
25	L	L_{1}			1100	695	1100	705	1100	705	1100	710	1100	720	1100	730	1100	750	1100	760	1100	775
	h	H			70	160	70	170	70	170	70	180	70	185	70	195	70	215	70	230	70	240
32	L	L_{1}					1100	715	1100	715	1100	720	1100	730	1100	740	1100	760	1100	770	1100	785
	h	H					70	180	70	180	70	190	70	195	70	205	70	225	70	240	70	250
40	L	L_{1}							1100	715	1100	720	1100	730	1100	740	1100	760	1100	770	1100	785
	h	H							70	180	70	190	70	195	70	205	70	225	70	240	70	250
50	L	L_{1}									1100	730	1100	735	1100	745	1100	765	1100	780	1100	790
	h	H									70	195	70	205	70	215	70	235	70	245	70	260
65	L	L_{1}											1100	745	1100	745	1100	775	1100	785	1100	800
	h	H											70	210	70	220	70	240	70	255	70	265
80	L	L_{1}													1200	800	1200	800	1200	800	1200	800
	h	H													70	230	70	250	70	265	70	275
100	L	L_{1}															1200	800	1200	800	1200	800
	h	H															70	270	70	285	70	295
125	L	L_{1}																	1300	850	1300	850
	h	H																	70	295	70	310
150	L	L_{1}																			1300	850
	h	H																			70	320

$\mathbf{d}_{\mathrm{a}}=$ Steel pipe outside diameter in mm
$\mathbf{L}=$ Construction length passage in $\mathrm{mm} \quad \mathbf{H}=$ Axle distance in mm
$\mathbf{s}=$ Steel pipe wall thickness acc. to isoplus in $\mathrm{mm} \quad \mathbf{L}_{1}=$ Construction axis length exit in mm
$\mathbf{D}_{\mathbf{a}}=$ Jacket-pipe outside diameter in mm
$\mathbf{h}=$ Clear component height in mm
The mentioned steel pipe wall thicknesses are corresponding with the minimum requirements acc. to the standard respectively to the isoplus standard wall thicknesses. Length of bare steel pipe ends: $220 \mathrm{~mm} \pm 10 \mathrm{~mm}$.

For reasons of optimization and in order to follow the actual technical standard we will reserve modifications of dimensions as well as technical modifications. No obligation can be derived in case of possible dimension variations as well as in case of technical modifications.

2.2 isoplus - Single Pipe (isopipe ${ }^{\oplus}$-Single)

45º

Dimensions Insulation Class Standard

	Transmission respectively main pipe dimensions																					
	DN		200		250		300		350		400		450		500		600		700		800	
	Inch		$8{ }^{\prime \prime}$		10"		12"		14"		16"		18"		20"		$24^{\prime \prime}$		28"		32"	
	d_{a}		219,1		273,0		323,9		355,6		406,4		457,2		508,0		610,0		711,0		813,0	
	s		4,5		5,0		5,6		5,6		6,3		6,3		6,3		7,1		8,0		8,8	
DN	D_{a}		315		400		450		500		560		630		670		800		900		1000	
20	L	L_{1}	1100	805	1100	850	1100	875	1100	900	1100	930	1100	965	1100	985	1100	1050	1100	1100	1100	1150
	h	H	70	275	70	315	70	340	70	365	70	395	70	430	70	450	70	515	70	565	70	615
25	L	L_{1}	1100	805	1100	850	1100	875	1100	900	1100	930	1100	965	1100	985	1100	1050	1100	1100	1100	1150
	h	H	70	275	70	315	70	340	70	365	70	395	70	430	70	450	70	515	70	565	70	615
32	L	L_{1}	1100	815	1100	860	1100	885	1100	910	1100	940	1100	975	1100	995	1100	1060	1100	1110	1100	1160
	h	H	70	285	70	325	70	350	70	375	70	405	70	440	70	460	70	525	70	575	70	625
40	L	L_{1}	1100	815	1100	860	1100	885	1100	910	1100	940	1100	975	1100	995	1100	1060	1100	1110	1100	1160
	h	H	70	285	70	325	70	350	70	375	70	405	70	440	70	460	70	525	70	575	70	625
50	L	L_{1}	1100	825	1100	865	1100	890	1100	915	1100	945	1100	980	1100	1000	1100	1065	1100	1115	1100	1165
	h	H	70	290	70	335	70	360	70	385	70	415	70	450	70	470	70	535	70	585	70	635
65	L	L_{1}	1100	830	1100	875	1100	900	1100	925	1100	955	1100	990	1100	1000	1100	1075	1100	1125	1100	1175
	h	H	70	300	70	340	70	365	70	390	70	420	70	455	70	455	70	540	70	590	70	640
80	L	L_{1}	1200	850	1200	900	1200	900	1200	950	1200	950	1200	1000	1200	1000	1200	1050	1200	1150	1200	1150
	h	H	70	310	70	350	70	375	70	400	70	430	70	465	70	485	70	550	70	600	70	650
100	L	L_{1}	1200	850	1200	900	1200	950	1200	950	1200	1000	1200	1000	1200	1050	1200	1100	1200	1150	1200	1200
	h	H	70	330	70	370	70	495	70	420	70	450	70	485	70	505	70	570	70	620	70	670
125	L	L_{1}	1300	850	1300	900	1300	950	1300	950	1300	1000	1300	1050	1300	1050	1300	1100	1300	1150	1300	1200
	h	H	70	340	70	385	70	410	70	435	70	465	70	500	70	520	70	585	70	635	70	685
150	L	L_{1}	1300	900	1300	950	1300	950	1300	1000	1300	1000	1300	1050	1300	1100	1300	1150	1300	1200	1300	1200
	h	H	70	355	70	395	70	420	70	445	70	475	70	510	70	530	70	595	70	645	70	695
200	L	L_{1}	1400	950	1400	1000	1400	1000	1400	1050	1400	1050	1400	1100	1400	1150	1400	1200	1400	1250	1400	1250
	h	H	70	385	70	430	70	455	70	480	70	510	70	545	70	565	70	630	70	680	70	730
250	L	L_{1}			1500	1050	1500	1050	1500	1100	1500	1100	1500	1150	1500	1200	1500	1250	1500	1300	1500	1300
	h	H			70	470	70	495	70	520	70	550	70	585	70	605	70	670	70	720	70	770
300	L	L_{1}					1600	1100	1600	1150	1600	1150	1600	1200	1600	1250	1600	1300	1600	1350	1600	1340
	h	H					70	520	70	545	70	575	70	510	70	630	70	695	70	745	70	795
350	L	L_{1}							1700	1200	1700	1200	1700	1250	1700	1250	1700	1300	1700	1350	1700	1400
	h	H							70	570	70	600	70	635	70	655	70	720	70	770	70	820
400	L	L_{1}									1700	1250	1700	1300	1700	1300	1700	1350	1700	1400	1700	1450
	h	H									70	630	70	665	70	685	70	750	70	800	70	850
450	L	L_{1}											1800	1350	1800	1350	1800	1400	1800	1450	1800	1500
	h	H											70	700	70	720	70	785	70	835	70	885
500	L	L_{1}													1800	1500	1800	1600	1800	1700	1800	1700
	h	H													70	740	70	805	70	875	70	905
600	L	L_{1}															2000	1700	2000	1800	2000	1800
	h	H															70	870	70	920	70	970
700	L	L_{1}																	2100	1900	2100	1900
	h	H																	70	970	70	1020
800	L	L_{1}																			2200	2000
	h	H																			70	1070

Legend, information and explanation see previous page 2 RIGID COMPOUND SYSTEMS 2.2 isoplus - Single Pipe (isopipe ${ }^{\circledR}$-Single)

45으- Branch / Insulation Class 1x reinforced

Dimensions Insulation Class 1x reinforced

	Transmission respectively main pipe dimensions																					
	DN		20		25		32		40		50		65		80		100		125		150	
	Inch		3/4"		1 "		$11 / 2^{\prime \prime}$		$11 / 4^{\prime \prime}$		2 "		$21 / 2^{\prime \prime}$		3"		4"		5"		6 "	
	d_{a}		26,9		33,7		42,4		48,3		60,3		76,1		88,9		114,3		139,7		168,3	
	s		2,6		3,2		3,2		3,2		3,2		3,2		3,2		3,6		4,0		4,5	
DN	D_{a}		110		110		125		125		140		160		180		225		250		280	
20	L	L_{1}	1100	715	1100	715	1100	720	1100	720	1100	730	1100	740	1100	750	1100	770	1100	785	1100	800
	h	H	70	180	70	180	70	190	70	190	70	195	70	205	70	215	70	240	70	250	70	265
25	L	L_{1}			1100	715	1100	720	1100	720	1100	730	1100	740	1100	750	1100	770	1100	785	1100	800
	h	H			70	180	70	190	70	190	70	195	70	205	70	215	70	240	70	250	70	265
32	L	L_{1}					1100	730	1100	730	1100	735	1100	745	1100	755	1100	780	1100	790	1100	805
	h	H					70	195	70	195	70	205	70	215	70	225	70	245	70	260	70	275
40	L	L_{1}							1100	730	1100	735	1100	745	1100	755	1100	780	1100	790	1100	805
	h	H							70	195	70	205	70	215	70	225	70	245	70	260	70	275
50	L	L_{1}									1100	745	1100	755	1100	765	1100	785	1100	800	1100	815
	h	H									70	210	70	220	70	230	70	255	70	265	70	280
65	L	L_{1}											1100	765	1100	775	1100	795	1100	810	1100	825
	h	H											70	230	70	240	70	265	70	275	70	290
80	L	L_{1}													1200	800	1200	800	1200	800	1200	850
	h	H													70	250	70	275	70	285	70	300
100	L	L_{1}															1200	850	1200	850	1200	850
	h	H															70	295	70	310	70	325
125	L	L_{1}																	1300	850	1300	850
	h	H																	70	320	70	335
150	L	L_{1}																			1300	900
	h	H																			70	350

$\mathbf{d}_{\mathbf{a}}=$ Steel pipe outside diameter in mm	$\mathbf{L}=$ Construction length passage in mm	$\mathbf{H}=$ Axle distance in mm
$\mathbf{s}=$ Steel pipe wall thickness acc. to isoplus in mm	$\mathbf{L}_{1}=$ Construction axis length exit in mm	
$\mathbf{D}_{\mathrm{a}}=$ Jacket-pipe outside diameter in mm	$\mathbf{h}=$ Clear component height in mm	

The mentioned steel pipe wall thicknesses are corresponding with the minimum requirements acc. to the standard respectively to the isoplus standard wall thicknesses. Length of bare steel pipe ends: $220 \mathrm{~mm} \pm 10 \mathrm{~mm}$.

For reasons of optimization and in order to follow the actual technical standard we will reserve modifications of dimensions as well as technical modifications. No obligation can be derived in case of possible dimension variations as well as in case of technical modifications.

2 RIGID COMPOUND SYSTEMS

2.2 isoplus - Single Pipe (isopipe ${ }^{\circledR}$-Single)

45우-Branch / Insulation Class 1x reinforced

Dimensions Insulation Class 1x reinforced

	Transmission respectively main pipe dimensions																					
	DN		200		250		300		350		400		450		500		600		700		800	
	Inch		8"		10"		$12^{\prime \prime}$		14"		$16^{\prime \prime}$		18*		20"		$24^{\prime \prime}$		28"		$32 \times$	
	d_{a}		219,1		273,0		323,9		355,6		406,4		457,2		508,0		610,0		711,0		813,0	
	s		4,5		5,0		5,6		5,6		6,3		6,3		6,3		7,1		8,0		8,8	
DN	D_{a}		355		450		500		560		630		670		710		900		1000		1100	
20	L	L_{1}	1100	835	1100	885	1100	910	1100	940	1100	975	1100	995	1100	1015	1100	1110	1100	1160	1100	1210
	h	H	70	305	70	350	70	375	70	405	70	440	70	460	70	480	70	575	70	625	70	675
25	L	L_{1}	1100	835	1100	885	1100	910	1100	940	1100	975	1100	995	1100	1015	1100	1110	1100	1160	1100	1210
	h	H	70	305	70	350	70	375	70	405	70	440	70	460	70	480	70	575	70	625	70	675
32	L	L_{1}	1100	845	1100	890	1100	915	1100	945	1100	980	1100	1000	1100	1020	1100	1115	1100	1165	1100	1215
	h	H	70	310	70	360	70	385	70	415	70	450	70	470	70	490	70	585	70	635	70	685
40	L	L_{1}	1100	845	1100	890	1100	915	1100	945	1100	980	1100	1000	1100	1020	1100	1115	1100	1165	1100	1215
	h	H	70	310	70	360	70	385	70	415	70	450	70	470	70	490	70	585	70	635	70	685
50	L	L_{1}	1100	850	1100	900	1100	925	1100	955	1100	990	1100	1010	1100	1030	1100	1125	1100	1175	1100	1225
	h	H	70	320	70	365	70	390	70	420	70	455	70	475	70	495	70	590	70	640	70	690
65	L	L_{1}	1100	860	1100	910	1100	935	1100	965	1100	1000	1100	1020	1100	1040	1100	1135	1100	1185	1100	1235
	h	H	70	330	70	375	70	400	70	430	70	465	70	485	70	505	70	600	70	650	70	700
80	L	L_{1}	1200	850	1200	900	1200	950	1200	950	1200	1000	1200	1050	1200	1100	1200	1150	1200	1200	1200	1200
	h	H	70	340	70	385	70	410	70	440	70	475	70	495	70	515	70	610	70	660	70	710
100	L	L_{1}	1200	900	1200	950	1200	950	1200	1000	1200	1050	1200	1050	1200	1100	1200	1200	1200	1250	1200	1250
	h	H	70	360	70	410	70	435	70	465	70	500	70	520	70	540	70	635	70	685	70	735
125	L	L_{1}	1300	900	1300	950	1300	1000	1300	1000	1300	1050	1300	1050	1300	1100	1300	1200	1300	1250	1300	1250
	h	H	70	375	70	420	70	445	70	475	70	510	70	530	70	550	70	645	70	695	70	745
150	L	L_{1}	1300	950	1300	1000	1300	1000	1300	1050	1300	1100	1300	1100	1300	1100	1300	1250	1300	1300	1300	1300
	h	H	70	390	70	435	70	460	70	490	70	525	70	545	70	565	70	660	70	710	70	760
200	L	L_{1}	1400	1000	1400	1050	1400	1050	1400	1100	1400	1150	1400	1150	1400	1150	1400	1300	1400	1350	1400	1350
	h	H	70	425	70	475	70	500	70	530	70	565	70	585	70	605	70	700	70	750	70	800
250	L	L_{1}			1500	1100	1500	1100	1500	1150	1500	1200	1500	1200	1500	1250	1500	1350	1500	1400	1500	1400
	h	H			70	520	70	545	70	575	70	610	70	630	70	650	70	745	70	795	70	845
300	L	L_{1}					1600	1150	1600	1200	1600	1250	1600	1250	1600	1250	1600	1400	1600	1450	1600	1450
	h	H					70	575	70	600	70	635	70	655	70	675	70	770	70	820	70	870
350	L	L_{1}							1700	1250	1700	1300	1700	1300	1700	1350	1700	1450	1700	1500	1700	1500
	h	H							70	630	70	665	70	685	70	705	70	800	70	850	70	900
400	L	L_{1}									1700	1350	1700	1350	1700	1350	1700	1500	1700	1550	1700	1550
	h	H									70	700	70	720	70	740	70	835	70	885	70	935
450	L	L_{1}											1800	1400	1800	1400	1800	1500	1800	1550	1800	1550
	h	H											70	740	70	760	70	855	70	905	70	955
500	L	L_{1}													1800	1500	1800	1600	1800	1700	1800	1700
	h	H													70	780	70	875	70	925	70	975
600	L	L_{1}															2000	1700	2000	1800	2000	1800
	h	H															70	970	70	1020	70	1070
700	L	L_{1}																	2100	1900	2100	1900
	h	H																	70	1070	70	1120
800	L	L_{1}																			2200	2100
	h	H																			70	1170

Legend, information and explanation see previous page 2 RIGID COMPOUND SYSTEMS 2.2 isoplus - Single Pipe (isopipe ${ }^{\circledR}$-Single)

45 ${ }^{\circ}$-T-Branch / Insulation Class 2x reinforced

Dimensions Insulation Class 2x reinforced

	Transmission respectively main pipe dimensions																					
	DN		20		25		32		40		50		65		80		100		125		150	
	Inch		3/4"		1 "		$11 / 2^{\prime \prime}$		$11 / 4{ }^{\prime \prime}$		2 "		$21 / 2^{\prime \prime}$		3"		4 "		5 "		6 "	
	da		26,9		33,7		42,4		48,3		60,3		76,1		88,9		114,3		139,7		168,3	
	s		2,6		3,2		3,2		3,2		3,2		3,2		3,2		3,6		4,0		4,5	
DN	D_{a}		125		125		140		140		160		180		200		250		280		315	
20	L	L_{1}	1100	730	1100	730	1100	735	1100	735	1100	745	1100	755	1100	765	1100	790	1100	805	1100	825
	h	H	70	195	70	195	70	205	70	205	70	215	70	225	70	235	70	260	70	275	70	290
25	L	L_{1}			1100	730	1100	735	1100	735	1100	745	1100	755	1100	765	1100	790	1100	805	1100	825
	h	H			70	195	70	205	70	205	70	215	70	225	70	235	70	260	70	275	70	290
32	L	L_{1}					1100	745	1100	745	1100	755	1100	765	1100	775	1100	800	1100	815	1100	830
	h	H					70	210	70	210	70	220	70	230	70	240	70	265	70	280	70	300
40	L	L_{1}							1100	745	1100	755	1100	765	1100	775	1100	800	1100	815	1100	830
	h	H							70	210	70	220	70	230	70	240	70	265	70	280	70	300
50	L	L_{1}									1100	765	1100	775	1100	785	1100	810	1100	825	1100	840
	h	H									70	230	70	240	70	250	70	275	70	290	70	310
65	L	L_{1}											1100	785	1100	795	1100	820	1100	835	1100	850
	h	H											70	250	70	260	70	285	70	300	70	320
80	L	L_{1}													1200	800	1200	850	1200	850	1200	850
	h	H													70	270	70	295	70	310	70	330
100	L	L_{1}															1200	850	1200	900	1200	900
	h	H															70	320	70	335	70	355
125	L	L_{1}																	1300	900	1300	950
	h	H																	70	350	70	370
150	L	L_{1}																			1300	950
	h	H																			70	385

$\mathbf{d}_{\mathbf{a}}=$ Steel pipe outside diameter in mm
$\mathbf{L}=$ Construction length passage in $\mathrm{mm} \quad \mathbf{H}=$ Axle distance in mm
$\mathbf{s}=$ Steel pipe wall thickness acc. to isoplus in $\mathrm{mm} \mathbf{L}_{1}=$ Construction axis length exit in mm
$\mathrm{D}_{\mathrm{a}}=$ Jacket-pipe outside diameter in mm
h = Clear component height in mm

The mentioned steel pipe wall thicknesses are corresponding with the minimum requirements acc. to the standard respectively to the isoplus standard wall thicknesses. Length of bare steel pipe ends: $220 \mathrm{~mm} \pm 10 \mathrm{~mm}$.
For reasons of optimization and in order to follow the actual technical standard we will reserve modifications of dimensions as well as technical modifications. No obligation can be derived in case of possible dimension variations as well as in case of technical modifications.

2 RIGID COMPOUND SYSTEMS

2.2 isoplus - Single Pipe (isopipe ${ }^{\text {® }}$-Single)

45º-T-Branch / Insulation Class 2x reinforced

Dimensions Insulation Class 2x reinforced

	Transmission respectively main pipe dimensions																	
	DN		200		250		300		350		400		450		500		600	
	Inch		8"		10"		12"		14"		$16^{\prime \prime}$		18"		20"		24"	
	d_{a}		219,1		273,0		323,9		355,6		406,4		457,0		508,0		610,0	
	s		4,5		5,0		5,6		5,6		6,3		6,3		6,3		7,1	
DN	$\mathrm{D}_{\text {a }}$		400		500		560		630		670		710		800		1000	
20	L	L_{1}	1100	865	1100	915	1100	945	1100	980	1100	1000	1100	1020	1100	1067	1100	1118
	h	H	70	335	70	385	70	415	70	450	70	470	70	490	70	535	70	635
25	L	L_{1}	1100	865	1100	915	1100	945	1100	980	1100	1000	1100	1020	1100	1067	1100	1118
	h	H	70	335	70	385	70	415	70	450	70	470	70	490	70	535	70	635
32	L	L1	1100	875	1100	925	1100	955	1100	990	1100	1010	1100	1030	1100	1075	1100	1125
	h	H	70	340	70	390	70	420	70	455	70	475	70	495	70	540	70	640
40	L	L_{1}	1100	875	1100	925	1100	955	1100	990	1100	1010	1100	1030	1100	1075	1100	1125
	h	H	70	340	70	390	70	420	70	455	70	475	70	495	70	540	70	640
50	L	L_{1}	1100	885	1100	935	1100	965	1100	1000	1100	1020	1100	1040	1100	1085	1100	1135
	h	H	70	350	70	400	70	430	70	465	70	485	70	505	70	550	70	650
65	L	L_{1}	1100	895	1100	945	1100	965	1100	1010	1100	1030	1100	1050	1100	1085	1100	1145
	h	H	70	360	70	410	70	440	70	475	70	495	70	515	70	560	70	660
80	L	L_{1}	1200	950	1200	1000	1200	1000	1200	1050	1200	1050	1200	1100	1200	1150	1200	1140
	h	H	70	370	70	420	70	450	70	485	70	505	70	525	70	570	70	670
100	L	L_{1}	1200	950	1200	1000	1200	1000	1200	1050	1200	1100	1200	1100	1200	1150	1200	1175
	h	H	70	395	70	445	70	475	70	510	70	530	70	550	70	595	70	695
125	L	L_{1}	1300	1000	1300	1050	1300	1050	1300	1100	1300	1100	1300	1150	1300	1200	1300	1178
	h	H	70	410	70	460	70	490	70	525	70	545	70	565	70	610	70	710
150	L	L_{1}	1300	1000	1300	1050	1300	1050	1300	1100	1300	1150	1300	1200	1300	1200	1300	1203
	h	H	70	430	70	480	70	510	70	545	70	565	70	585	70	630	70	730
200	L	L_{1}	1400	1050	1400	1100	1400	1150	1400	1150	1400	1200	1400	1250	1400	1300	1400	1263
	h	H	70	470	70	520	70	550	70	585	70	605	70	625	70	670	70	770
250	L	L_{1}			1500	1200	1500	1200	1500	1250	1500	1250	1500	1300	1500	1350	1500	1330
	h	H			70	570	70	600	70	635	70	655	70	675	70	720	70	820
300	L	L1					1600	1250	1600	1300	1600	1300	1600	1350	1600	1400	1600	1395
	h	H					70	630	70	665	70	685	70	705	70	750	70	850
350	L	L_{1}							1700	1350	1700	1350	1700	1400	1700	1450	1700	1415
	h	H							70	700	70	720	70	740	70	785	70	885
400	L	L_{1}									1700	1400	1700	1450	1700	1500	1700	1455
	h	H									70	740	70	760	70	805	70	905
450	L	L_{1}											1800	1450	1800	1500	1800	1490
	h	H											70	780	70	825	70	925
500	L	L_{1}													1800	1600	1800	1545
	h	H													70	870	70	970
600	L	L_{1}															2000	1700
	h	H															70	1070

ATTENTION: Insulation class $2 x$ reinforced are special products. Please check availability in case of request.

2 RIGID COMPOUND SYSTEMS 2.2 isoplus - Single Pipe (isopipe ${ }^{\circledR}$-Single)

Parallel-Branch / Insulation Class Standard

Dimensions Insulation Class Standard

	Transmission respectively main pipe dimensions																					
	DN		20		25		32		40		50		65		80		100		125		150	
	Inch		$3 / 4{ }^{\prime \prime}$		1 "		$11 / 2^{\prime \prime}$		$11 / 4^{\prime \prime}$		2 "		$21 / 2^{\prime \prime}$		3 "		$4^{\prime \prime}$		5		6 "	
	d_{a}		26,9		33,7		42,4		48,3		60,3		76,1		88,9		114,3		139,7		168,3	
	s		2,6		3,2		3,2		3,2		3,2		3,2		3,2		3,6		4,0		4,5	
DN	D_{a}		90		90		110		110		125		140		160		200		225		250	
20	L	L_{1}	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600
	h	H	120	210	120	210	120	220	120	220	120	230	120	235	120	245	120	265	120	280	120	290
25	L	L_{1}			1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600
	h	H			120	210	120	220	120	220	120	230	120	235	120	245	120	265	120	280	120	290
32	L	L_{1}					1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600
	h	H					120	230	120	230	120	240	120	245	120	255	120	275	120	290	120	300
40	L	L_{1}							1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600
	h	H							120	230	120	240	120	245	120	255	120	275	120	290	120	300
50	L	L_{1}									1100	600	1100	600	1100	600	1100	600	1100	600	1100	600
	h	H									120	245	120	255	120	265	120	285	120	295	120	310
65	L	L_{1}											1100	600	1100	600	1100	600	1100	600	1100	600
	h	H											120	260	120	270	120	290	120	305	120	315
80	L	L_{1}													1200	550	1200	550	1200	550	1200	550
	h	H													130	290	120	300	120	315	120	325
100	L	L_{1}															1200	600	1200	600	1200	600
	h	H															120	320	120	335	120	345
125	L	L_{1}																	1300	600	1300	600
	h	H																	140	365	140	380
150	L	L_{1}																			1300	650
	h	H																			122	375

$d_{a}=$ Steel pipe outside diameter in mm
$\mathbf{L}=$ Construction length passage in mm
H = Axle distance in mm
$\mathbf{s}=$ Steel pipe wall thickness acc. to isoplus in $\mathrm{mm} \mathbf{L}_{\mathbf{1}}=$ Construction axis length exit in mm
$\mathbf{D}_{\mathbf{a}}=$ Jacket-pipe outside diameter in $\mathrm{mm} \quad \mathbf{h}=$ Clear component height in mm
The mentioned steel pipe wall thicknesses are corresponding with the minimum requirements acc. to the standard respectively to the isoplus standard wall thicknesses. Length of bare steel pipe ends: $220 \mathrm{~mm} \pm 10 \mathrm{~mm}$.

For reasons of optimization and in order to follow the actual technical standard we will reserve modifications of dimensions as well as technical modifications. No obligation can be derived in case of possible dimension variations as well as in case of technical modifications.

2 RIGID COMPOUND SYSTEMS

2.2 isoplus - Single Pipe (isopipe ${ }^{\circledR}$-Single)

Parallel-Branch / Insulation Class Standard

Dimensions Insulation Class Standard

	Transmission respectively main pipe dimensions																					
	DN		200		250		300		350		400		450		500		600		700		800	
	Inch		8"		10"		$12^{\prime \prime}$		$14^{\prime \prime}$		16^{\prime}		$18^{\prime \prime}$		20"		24 "		28"		$32 \times$	
	d_{a}		219,1		273,0		323,9		355,6		406,4		457,2		508,0		610,0		711,0		813,0	
	s		4,5		5,0		5,6		5,6		6,3		6,3		6,3		7,1		8,0		8,8	
DN	D_{a}		315		400		450		500		560		630		670		800		900		1000	
20	L	L_{1}	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600
	h	H	120	325	120	365	120	390	120	415	120	445	120	480	120	500	120	565	120	615	120	665
25	L	L_{1}	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600
	h	H	120	325	120	365	120	390	120	415	120	445	120	480	120	500	120	565	120	615	120	665
32	L	L_{1}	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600
	h	H	120	335	120	375	120	400	120	425	120	455	120	490	120	510	120	575	120	625	120	675
40	L	L_{1}	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600
	h	H	120	335	120	375	120	400	120	425	120	455	120	490	120	510	120	575	120	625	120	675
50	L	L_{1}	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600
	h	H	120	340	120	385	120	410	120	435	120	465	120	500	120	520	120	585	120	635	120	685
65	L	L_{1}	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600
	h	H	120	350	120	390	120	415	120	440	120	470	120	505	120	525	120	590	120	640	120	690
80	L	L_{1}	1200	600	1200	600	1200	600	1200	600	1200	600	1200	600	1200	600	1200	600	1200	600	1200	600
	h	H	120	360	120	400	120	425	120	450	120	480	120	515	120	535	120	600	120	650	120	700
100	L	L_{1}	1200	550	1200	550	1200	550	1200	550	1200	550	1200	550	1200	550	1200	550	1200	550	1200	550
	h	H	120	380	120	420	120	445	120	470	120	500	120	535	120	555	120	620	120	670	120	720
125	L	L_{1}	1300	600	1300	600	1300	600	1300	600	1300	600	1300	600	1300	600	1300	600	1300	600	1300	600
	h	H	120	390	120	433	120	458	120	483	120	515	120	548	120	568	120	635	120	685	120	735
150	L	L_{1}	1300	650	1300	650	1300	650	1300	650	1300	650	1300	650	1300	650	1300	650	1300	650	1300	650
	h	H	114	390	140	465	140	490	140	515	140	545	140	580	140	600	140	665	140	715	140	765
200	L	L_{1}	1400	700	1400	700	1400	700	1400	700	1400	700	1400	700	1400	700	1400	700	1400	700	1400	750
	h	H	168	485	150	510	150	535	190	600	190	630	180	655	185	680	160	720	160	770	160	820
250	L	L_{1}			1500	800	1500	800	1500	800	1500	800	1500	800	1500	800	1500	800	1500	800	1500	800
	h	H			197	600	197	625	188	640	184	665	174	690	230	765	220	820	180	830	180	880
300	L	L_{1}					1600	850	1600	850	1600	850	1600	850	1600	850	1600	850	1600	850	1600	850
	h	H					261	715	252	730	247	755	238	780	243	805	229	855	230	905	220	945
350	L	L_{1}							1700	900	1700	900	1700	900	1700	900	1700	900	1700	900	1700	900
	h	H							312	815	308	840	298	865	304	890	289	940	290	990	291	1045
400	L	L_{1}									1700	1000	1700	1000	1700	1000	1700	1000	1700	1000	1700	1000
	h	H									355	915	345	940	351	970	336	1020	337	1070	338	1120
450	L	L_{1}											1800	1100	1800	1100	1800	1100	1800	1100	1800	1100
	h	H											399	1030	404	1055	390	1105	391	1160	392	1210
500	L	L_{1}													1800	1200	1800	1200	1800	1200	1800	1200
	h	H													473	1145	459	1195	460	1245	460	1295
600	L	L_{1}															2000	1250	2000	1250	2000	1250
	h	H															546	1350	572	1425	573	1475
700	L	L_{1}																	2100	1400	2100	1400
	h	H																	688	1590	689	1640
800	L	L_{1}																			2200	1600
	h	H																			816	1820

2 RIGID COMPOUND SYSTEMS 2.2 isoplus - Single Pipe (isopipe ${ }^{\circledR}$-Single)

Parallel-Branch / Insulation Class 1x reinforced

Dimensions Insulation Class 1x reinforced

	Transmission respectively main pipe dimensions																					
	DN		20		25		32		40		50		65		80		100		125		150	
	Inch		$3 / 4{ }^{4}$		1 "		$11 / 2^{\prime \prime}$		$11 / 4{ }^{\prime \prime}$		2 "		$21 / 2^{\prime \prime}$		3 "		4"		5"		6 "	
	d_{a}		26,9		33,7		42,4		48,3		60,3		76,1		88,9		114,3		139,7		168,3	
	s		2,6		3,2		3,2		3,2		3,2		3,2		3,2		3,6		4,0		4,5	
DN	D_{a}		110		110		125		125		140		160		180		225		250		280	
20	L	L_{1}	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600
	h	H	120	230	120	230	120	240	120	240	120	245	120	255	120	265	120	290	120	300	120	315
25	L	L_{1}			1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600
	h	H			120	230	120	240	120	240	120	245	120	255	120	265	120	290	120	300	120	315
32	L	L_{1}					1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600
	h	H					120	245	120	245	120	255	120	265	120	275	120	295	120	310	120	325
40	L	L_{1}							1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600
	h	H							120	245	120	255	120	265	120	275	120	295	120	310	120	325
50	L	L_{1}									1100	600	1100	600	1100	600	1100	600	1100	600	1100	600
	h	H									120	260	120	270	120	280	120	305	120	315	120	330
65	L	L_{1}											1100	600	1100	600	1100	600	1100	600	1100	600
	h	H											120	280	120	290	120	315	120	325	120	340
80	L	L_{1}													1200	600	1200	600	1200	600	1200	600
	h	H													120	300	120	325	120	335	120	350
100	L	L_{1}															1200	600	1200	600	1200	600
	h	H															120	345	120	360	120	375
125	L	L_{1}																	1300	600	1300	600
	h	H																	120	370	140	405
150	L	L_{1}																			1300	650
	h	H																			140	420

$\mathbf{d}_{\mathbf{a}}=$ Steel pipe outside diameter in mm
$\mathbf{L}=$ Construction length passage in mm
$\mathrm{H}=$ Axle distance in mm
$\mathbf{s}=$ Steel pipe wall thickness acc. to isoplus in $\mathrm{mm} \mathbf{L}_{\mathbf{1}}=$ Construction axis length exit in mm
$\mathbf{D}_{\mathbf{a}}=$ Jacket-pipe outside diameter in mm
h = Clear component height in mm
The mentioned steel pipe wall thicknesses are corresponding with the minimum requirements acc. to the standard respectively to the isoplus standard wall thicknesses. Length of bare steel pipe ends: $220 \mathrm{~mm} \pm 10 \mathrm{~mm}$.

For reasons of optimization and in order to follow the actual technical standard we will reserve modifications of dimensions as well as technical modifications. No obligation can be derived in case of possible dimension variations as well as in case of technical modifications.

2 RIGID COMPOUND SYSTEMS

2.2 isoplus - Single Pipe (isopipe ${ }^{\circledR}$-Single)

Parallel-Branch / Insulation Class 1x reinforced

Dimensions Insulation Class 1x reinforced

	Transmission respectively main pipe dimensions																					
	DN		200		250		300		350		400		450		500		600		700		800	
	Inch		$8{ }^{\text {a }}$		10"		12"		14"		$16^{\prime \prime}$		18"		20"		24 "		$28{ }^{\prime \prime}$		32 "	
	d_{a}		219,1		273,0		323,9		355,6		406,4		457,2		508,0		610,0		711,0		813,0	
	s		4,5		5,0		5,6		5,6		6,3		6,3		6,3		7,1		8,0		8,8	
DN	D_{a}		355		450		500		560		630		670		710		900		1000		1100	
20	L	L_{1}	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600
	h	H	120	355	120	400	120	425	120	455	120	490	120	510	120	530	120	625	120	675	120	725
25	L	L_{1}	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600
	h	H	120	355	120	400	120	425	120	455	120	490	120	510	120	530	120	625	120	675	120	725
32	L	L_{1}	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600
	h	H	120	360	120	410	120	435	120	465	120	500	120	520	120	540	120	635	120	685	120	735
40	L	L_{1}	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600
	h	H	120	360	120	410	120	435	120	465	120	500	120	520	120	540	120	635	120	685	120	735
50	L	L_{1}	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600
	h	H	120	370	120	415	120	440	120	470	120	505	120	525	120	545	120	640	120	690	120	740
65	L	L_{1}	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600
	h	H	120	380	120	425	120	450	120	480	120	515	120	535	120	555	120	650	120	700	120	750
80	L	L_{1}	1200	600	1200	600	1200	600	1200	600	1200	600	1200	600	1200	600	1200	600	1200	600	1200	600
	h	H	120	390	120	435	120	460	120	490	120	525	120	545	120	565	120	660	120	710	120	760
100	L	L_{1}	1200	600	1200	600	1200	600	1200	600	1200	600	1200	600	1200	600	1200	600	1200	600	1200	600
	h	H	120	410	120	460	120	485	120	515	120	550	120	570	120	590	120	685	120	735	120	785
125	L	L_{1}	1300	600	1300	600	1300	600	1300	600	1300	600	1300	600	1300	600	1300	600	1300	600	1300	600
	h	H	120	425	120	470	120	495	120	525	120	560	120	580	120	600	120	695	120	745	120	795
150	L	L_{1}	1300	650	1300	650	1300	650	1300	650	1300	650	1300	650	1300	650	1300	650	1300	650	1300	650
	h	H	140	460	140	505	140	530	140	560	140	595	140	615	140	635	140	730	140	780	140	830
200	L	L_{1}	1400	750	1400	750	1400	750	1400	750	1400	750	1400	750	1400	750	1400	750	1400	750	1400	750
	h	H	128	485	160	565	160	590	160	620	160	655	160	680	160	695	160	790	160	840	160	890
250	L	L_{1}			1500	800	1500	800	1500	800	1500	800	1500	800	1500	800	1500	800	1500	800	1500	800
	h	H			147	600	147	625	180	685	170	710	180	740	180	760	180	855	180	905	180	955
300	L	L_{1}					1600	850	1600	850	1600	850	1600	850	1600	850	1600	850	1600	850	1600	850
	h	H					211	711	197	730	237	805	193	780	198	805	220	920	220	970	220	1020
350	L	L_{1}							1700	900	1700	900	1700	900	1700	900	1700	900	1700	900	1700	900
	h	H							252	815	243	840	248	865	254	890	260	990	260	1040	260	1090
400	L	L_{1}									1700	1000	1700	1000	1700	1000	1700	1000	1700	1000	1700	1000
	h	H									285	915	290	940	296	970	300	1065	300	1115	300	1165
450	L	L_{1}											1800	1100	1800	1100	1800	1100	1800	1100	1800	1100
	h	H											359	1030	364	1055	320	1105	321	1160	322	1210
500	L	L_{1}													1800	1200	1800	1200	1800	1200	1800	1200
	h	H													433	1145	389	1195	390	1245	390	1295
600	L	L_{1}															2000	1250	2000	1250	2000	1250
	h	H															446	1350	472	1425	473	1475
700	L	L_{1}																	2100	1400	2100	1400
	h	H																	588	1590	589	1640
800	L	L_{1}																			2200	1600
	h	H																			716	1820

2 RIGID COMPOUND SYSTEMS 2.2 isoplus - Single Pipe (isopipe ${ }^{\circledR}$-Single)

Parallel-Branch / Insulation Class 2x reinforced

Dimensions Insulation Class 2 x reinforced

	Transmission respectively main pipe dimensions																					
	DN		20		25		32		40		50		65		80		100		125		150	
	Inch		3/4"		1"		$11 / 2^{\prime \prime}$		$11 / 4^{\prime \prime}$		2 "		$21 / 2^{\prime \prime}$		3 "		4"		5 "		6 "	
	d_{a}		26,9		33,7		42,4		48,3		60,3		76,1		88,9		114,3		139,7		168,3	
	s		2,6		3,2		3,2		3,2		3,2		3,2		3,2		3,6		4,0		4,5	
DN	D_{a}		125		125		140		140		160		180		200		250		280		315	
20	L	L_{1}	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600
	h	H	120	245	120	245	120	255	120	255	120	265	120	275	120	285	120	310	120	325	120	340
25	L	L_{1}			1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600
	h	H			120	245	120	255	120	255	120	265	120	275	120	285	120	310	120	325	120	340
32	L	L_{1}					1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600
	h	H					120	260	120	260	120	270	120	280	120	290	120	315	120	330	120	350
40	L	L_{1}							1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600
	h	H							120	260	120	270	120	280	120	290	120	315	120	330	120	350
50	L	L_{1}									1100	600	1100	600	1100	600	1100	600	1100	600	1100	600
	h	H									120	280	120	290	120	300	120	325	120	340	120	360
65	L	L_{1}											1100	600	1100	600	1100	600	1100	600	1100	600
	h	H											120	300	120	310	120	335	120	350	120	370
80	L	L_{1}													1200	600	1200	600	1200	600	1200	600
	h	H													120	320	120	345	120	360	120	380
100	L	L_{1}															1200	600	1200	600	1200	600
	h	H															120	370	120	385	120	405
125	L	L_{1}																	1300	600	1300	600
	h	H																	120	400	120	420
150	L	L_{1}																			1300	650
	h	H																			120	435

$\mathbf{d}_{\mathbf{a}}=$ Steel pipe outside diameter in mm
$\mathbf{L}=$ Construction length passage in mm
$\mathrm{H}=$ Axle distance in mm
$\mathbf{s}=$ Steel pipe wall thickness acc. to isoplus in $\mathrm{mm} \mathbf{L}_{1}=$ Construction axis length exit in mm
$\mathbf{D}_{\mathbf{a}}=$ Jacket-pipe outside diameter in mm
$\mathbf{h}=$ Clear component height in mm
The mentioned steel pipe wall thicknesses are corresponding with the minimum requirements acc. to the standard respectively to the isoplus standard wall thicknesses. Length of bare steel pipe ends: $220 \mathrm{~mm} \pm 10 \mathrm{~mm}$.

For reasons of optimization and in order to follow the actual technical standard we will reserve modifications of dimensions as well as technical modifications. No obligation can be derived in case of possible dimension variations as well as in case of technical modifications.

2 RIGID COMPOUND SYSTEMS

2.2 isoplus - Single Pipe (isopipe ${ }^{\text {® }}$-Single)

Parallel-Branch / Insulation Class 2x reinforced

Dimensions Insulation Class $2 x$ reinforced

	Transmission respectively main pipe dimensions																	
	DN		200		250		300		350		400		450		500		600	
	Inch		8"		10"		12"		14"		16"		18"		20"		$24^{\prime \prime}$	
	d_{a}		219,1		273,0		323,9		355,6		406,4		457,2		508,0		610,0	
	s		4,5		5,0		5,6		5,6		6,3		6,3		6,3		7,1	
DN	D_{a}		400		500		560		630		670		710		800		1000	
20	L	L_{1}	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600
	h	H	120	385	120	435	120	465	120	500	120	520	120	540	120	585	120	685
25	L	L_{1}	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600
	h	H	120	385	120	435	120	465	120	500	120	520	120	540	120	585	120	685
32	L	L_{1}	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600
	h	H	120	390	120	440	120	570	120	505	120	525	120	545	120	590	120	690
40	L	L_{1}	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600
	h	H	120	390	120	440	120	470	120	505	120	525	120	545	120	590	120	690
50	L	L_{1}	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600
	h	H	120	400	120	450	120	480	120	515	120	535	120	555	120	600	120	700
65	L	L_{1}	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600	1100	600
	h	H	120	410	120	460	120	490	120	525	120	545	120	565	120	610	120	710
80	L	L_{1}	1200	600	1200	600	1200	600	1200	600	1200	600	1200	600	1200	600	1200	600
	h	H	120	420	120	470	120	500	120	535	120	555	120	575	120	620	120	720
100	L	L_{1}	1200	600	1200	600	1200	600	1200	600	1200	600	1200	600	1200	600	1200	600
	h	H	120	445	120	495	120	525	120	560	120	580	120	600	120	645	120	745
125	L	L_{1}	1300	600	1300	600	1300	600	1300	600	1300	600	1300	600	1300	600	1300	600
	h	H	120	460	120	510	120	540	120	575	120	595	120	615	120	660	120	760
150	L	L_{1}	1300	650	1300	650	1300	650	1300	650	1300	650	1300	650	1300	650	1300	650
	h	H	120	480	120	530	120	560	120	600	120	615	120	635	120	680	120	780
200	L	L_{1}	1400	750	1400	750	1400	750	1400	750	1400	750	1400	750	1400	750	1400	750
	h	H	140	540	120	570	120	600	120	635	120	655	120	675	120	720	120	820
250	L	L_{1}			1500	800	1500	800	1500	800	1500	800	1500	800	1500	800	1500	800
	h	H			150	650	142	675	130	695	130	715	135	740	120	770	130	880
300	L	L_{1}					1600	850	1600	850	1600	850	1600	850	1600	850	1600	850
	h	H					151	715	185	780	190	805	195	830	175	855	150	930
350	L	L_{1}							1700	900	1700	900	1700	900	1700	900	1700	900
	h	H							182	815	188	840	245	915	225	940	180	995
400	L	L_{1}									1700	1000	1700	1000	1700	1000	1700	1000
	h	H									245	915	250	940	231	970	230	1065
450	L	L_{1}											1800	1100	1800	1100	1800	1100
	h	H											319	1030	299	1055	250	1105
500	L	L_{1}													1800	1200	1800	1200
	h	H													343	1145	294	1195
600	L	L_{1}															2000	1250
	h	H															346	1350

ATTENTION: Insulation class $2 x$ reinforced are special products. Please check availability in case of request.

Legend, information and explanation see previous page

2 RIGID COMPOUND SYSTEMS 2.2 isoplus - Single Pipe (isopipe ${ }^{\circledR}$-Single)

90º

Dimensions Insulation Class Standard

	Transmission respectively main pipe dimensions										
	DN	20	25	32	40	50	65	80	100	125	150
	Inch	3/4*	1 "	$11 / 2^{\prime \prime}$	$11 / 4^{\prime \prime}$	2"	$21 / 2^{\prime \prime}$	3"	4"	5"	$6{ }^{\text {a }}$
	d_{a}	26,9	33,7	42,4	48,3	60,3	76,1	88,9	114,3	139,7	168,3
	s	2,6	3,2	3,2	3,2	3,2	3,2	3,2	3,6	3,6	4,0
DN	D_{a}	90	90	110	110	125	140	160	200	225	250
20	L	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
	L_{1}	600	600	600	600	600	650	650	650	700	700
25	L		1100	1100	1100	1100	1100	1100	1100	1100	1100
	L_{1}		600	600	600	600	650	650	650	700	700
32	L			1100	1100	1100	1100	1100	1100	1100	1100
	L_{1}			600	600	600	650	650	650	700	700
40	L				1100	1100	1100	1100	1100	1100	1100
	L_{1}				600	600	650	650	650	700	700
50	L					1100	1100	1100	1100	1100	1100
	L_{1}					600	650	650	650	700	700
65	L						1100	1100	1100	1100	1100
	L_{1}						650	650	650	700	700
80	L							1200	1200	1200	1200
	L_{1}							650	650	700	700
100	L								1200	1200	1200
	L_{1}								650	700	700
125	L									1300	1300
	L_{1}									700	700
150	L										1300
	L_{1}										700

$\mathbf{d}_{\mathbf{a}}=$ Steel pipe outside diameter in mm
$\mathbf{s}=$ Steel pipe wall thickness acc. to isoplus in $\mathrm{mm} \quad \mathbf{L}_{\mathbf{1}}=$ Construction axis length exit in mm
$\mathbf{D}_{\mathbf{a}}=$ Jacket-pipe outside diameter in mm
The mentioned steel pipe wall thicknesses are corresponding with the minimum requirements acc. to the standard respectively to the isoplus standard wall thicknesses. Length of bare steel pipe ends: $220 \mathrm{~mm} \pm 10 \mathrm{~mm}$.

For reasons of optimization and in order to follow the actual technical standard we will reserve modifications of dimensions as well as technical modifications. No obligation can be derived in case of possible dimension variations as well as in case of technical modifications.

2 RIGID COMPOUND SYSTEMS

2.2 isoplus - Single Pipe (isopipe ${ }^{\oplus}$-Single)

90º- Vertical-Branch / Insulation Class Standard

Dimensions Insulation Class Standard

	Transmission respectively main pipe dimensions										
	DN	200	250	300	350	400	450	500	600	700	800
	Inch	8"	10"	12"	14"	$16^{\prime \prime}$	18"	20"	24 "	28"	$32^{\prime \prime}$
	d_{a}	219,1	273,0	323,9	355,6	406,4	457,2	508,0	610,0	711,0	813,0
	s	4,5	5,0	5,6	5,6	6,3	6,3	6,3	7,1	8,0	8,8
DN	D_{a}	315	400	450	500	560	630	670	800	900	1000
20	L	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
	L_{1}	700	800	800	800	800	900	900	1000	1000	1100
25	L	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
	L_{1}	700	800	800	800	800	900	900	1000	1000	1100
32	L	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
	L_{1}	700	800	800	800	800	900	900	1000	1000	1100
40	L	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
	L 1	700	800	800	800	800	900	900	1000	1000	1100
50	L	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
	L_{1}	700	800	800	800	800	900	900	1000	1000	1100
65	L	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
	L_{1}	700	800	800	800	800	900	900	1000	1000	1100
80	L	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200
	L_{1}	700	800	800	800	800	900	900	1000	1000	1100
100	L	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200
	L_{1}	700	800	800	800	800	900	900	1000	1000	1100
125	L	1300	1300	1300	1300	1300	1300	1300	1300	1300	1300
	L_{1}	700	800	800	800	800	900	900	1000	1000	1100
150	L	1300	1300	1300	1300	1300	1300	1300	1300	1300	1300
	L_{1}	700	800	800	800	800	900	900	1000	1000	1100
200	L	1400	1400	1400	1400	1400	1400	1400	1400	1400	1400
	L_{1}	700	800	800	800	800	900	900	1000	1000	1100
250	L		1500	1500	1500	1500	1500	1500	1500	1500	1500
	L_{1}		800	800	800	800	900	900	1000	1000	1100
300	L			1600	1600	1600	1600	1600	1600	1600	1600
	L_{1}			800	800	800	900	900	1000	1000	1100
350	L				1700	1700	1700	1700	1700	1700	1700
	L_{1}				800	800	900	900	1000	1000	1100
400	L					1700	1700	1700	1700	1700	1700
	L_{1}					800	900	900	1000	1000	1100
450	L						1800	1800	1800	1800	1800
	L_{1}						900	900	1000	1000	1100
500	L							1800	1800	1800	1800
	L_{1}							900	1000	1000	1100
600	L								2000	2000	2000
	L 1								1000	1000	1100
700	L									2100	2100
	L_{1}									1000	1100
800	L										2200
	L_{1}										1100

90º-Vertical-Branch / Insulation Class 1x reinforced

Dimensions Insulation Class 1x reinforced

	Transmission respectively main pipe dimensions										
	DN	20	25	32	40	50	65	80	100	125	150
	Inch	3/4"	1"	$11 / 2^{\prime \prime}$	$11 / 4{ }^{\text {a }}$	2"	$21 / 2^{\prime \prime}$	3 "	4 "	$5{ }^{\prime \prime}$	6 "
	d_{a}	26,9	33,7	42,4	48,3	60,3	76,1	88,9	114,3	139,7	168,3
	s	2,6	3,2	3,2	3,2	3,2	3,2	3,2	3,6	4,0	4,5
DN	D_{a}	110	110	125	125	140	160	180	225	250	280
20	L	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
	L_{1}	600	600	600	600	600	650	650	650	700	700
25	L		1100	1100	1100	1100	1100	1100	1100	1100	1100
	L_{1}		600	600	600	600	650	650	650	700	700
32	L			1100	1100	1100	1100	1100	1100	1100	1100
	L_{1}			600	600	600	650	650	650	700	700
40	L				1100	1100	1100	1100	1100	1100	1100
	L_{1}				600	600	650	650	650	700	700
50	L					1100	1100	1100	1100	1100	1100
	L_{1}					600	650	650	650	700	700
65	L						1100	1100	1100	1100	1100
	L_{1}						650	650	650	700	700
80	L							1200	1200	1200	1200
	L_{1}							650	650	700	700
100	L								1200	1200	1200
	L_{1}								650	700	700
125	L									1300	1300
	L_{1}									700	700
150	L										1300
	L_{1}										700

$\mathbf{d}_{\mathbf{a}}=$ Steel pipe outside diameter in mm
$\mathbf{L}=$ Construction length passage in mm
$\mathbf{s}=$ Steel pipe wall thickness acc. to isoplus in mm
$\mathbf{L}_{\mathbf{1}}=$ Construction axis length exit in mm
$\mathbf{D}_{\mathbf{a}}=$ Jacket-pipe outside diameter in mm
The mentioned steel pipe wall thicknesses are corresponding with the minimum requirements acc. to the standard respectively to the isoplus standard wall thicknesses. Length of bare steel pipe ends: $220 \mathrm{~mm} \pm 10 \mathrm{~mm}$.

For reasons of optimization and in order to follow the actual technical standard we will reserve modifications of dimensions as well as technical modifications. No obligation can be derived in case of possible dimension variations as well as in case of technical modifications.

2 RIGID COMPOUND SYSTEMS

2.2 isoplus - Single Pipe (isopipe ${ }^{\oplus}$-Single)

90°-Vertical-Branch / Insulation Class 1x reinforced

Dimensions Insulation Class 1x reinforced

	Transmission respectively main pipe dimensions										
	DN	200	250	300	350	400	450	500	600	700	800
	Inch	8"	10"	12"	14"	$16^{\prime \prime}$	$18{ }^{\prime \prime}$	20"	24"	28"	$32^{\text {" }}$
	d_{a}	219,1	273,0	323,9	355,6	406,4	457,2	508,0	610,0	711,0	813,0
	s	4,5	5,0	5,6	5,6	6,3	6,3	6,3	7,1	8,0	8,8
DN	D_{a}	355	450	500	560	630	670	710	900	1000	1100
20	L	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
	L_{1}	700	800	800	800	800	900	900	1000	1000	1100
25	L	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
	L_{1}	700	800	800	800	800	900	900	1000	1000	1100
32	L	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
	L_{1}	700	800	800	800	800	900	900	1000	1000	1100
40	L	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
	L_{1}	700	800	800	800	800	900	900	1000	1000	1100
50	L	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
	L_{1}	700	800	800	800	800	900	900	1000	1000	1100
65	L	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
	L_{1}	700	800	800	800	800	900	900	1000	1000	1100
80	L	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200
	L_{1}	700	800	800	800	800	900	900	1000	1000	1100
100	L	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200
	L_{1}	700	800	800	800	800	900	900	1000	1000	1100
125	L	1300	1300	1300	1300	1300	1300	1300	1300	1300	1300
	L_{1}	700	800	800	800	800	900	900	1000	1000	1100
150	L	1300	1300	1300	1300	1300	1300	1300	1300	1300	1300
	L_{1}	700	800	800	800	800	900	900	1000	1000	1100
200	L	1400	1400	1400	1400	1400	1400	1400	1400	1400	1400
	L_{1}	700	800	800	800	800	900	900	1000	1000	1100
250	L		1500	1500	1500	1500	1500	1500	1500	1500	1500
	L_{1}		800	800	800	800	900	900	1000	1000	1100
300	L			1600	1600	1600	1600	1600	1600	1600	1600
	L_{1}			800	800	800	900	900	1000	1000	1100
350	L				1700	1700	1700	1700	1700	1700	1700
	L_{1}				800	800	900	900	1000	1000	1100
400	L					1700	1700	1700	1700	1700	1700
	L_{1}					800	900	900	1000	1000	1100
450	L						1800	1800	1800	1800	1800
	L_{1}						900	900	1000	1000	1100
500	L							1800	1800	1800	1800
	L_{1}							900	1000	1000	1100
600	L								2000	2000	2000
	L_{1}								1000	1000	1100
700	L									2100	2100
	L_{1}									1000	1100
800	L										2200
	L_{1}										1100

Dimensions Insulation Class 2x reinforced

	Transmission respectively main pipe dimensions										
	DN	20	25	32	40	50	65	80	100	125	150
	Inch	3／4＂	1＂	$11 / 2^{\prime \prime}$	$11 / 4{ }^{\text {a }}$	2＂	$21 / 2^{\prime \prime}$	$3{ }^{\prime \prime}$	$4^{\text {a }}$	5＂	6 ＂
	d_{a}	26，9	33，7	42，4	48，3	60，3	76，1	88，9	114，3	139，7	168，3
	s	2，6	3，2	3，2	3，2	3，2	3，2	3，2	3，6	4，0	4，5
DN	D_{a}	125	125	140	140	160	180	200	250	280	315
20	L	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
	L_{1}	600	600	600	600	600	650	650	650	700	700
25	L		1100	1100	1100	1100	1100	1100	1100	1100	1100
	L_{1}		600	600	600	600	650	650	650	700	700
32	L			1100	1100	1100	1100	1100	1100	1100	1100
	L_{1}			600	600	600	650	650	650	700	700
40	L				1100	1100	1100	1100	1100	1100	1100
	L_{1}				600	600	650	650	650	700	700
50	L					1100	1100	1100	1100	1100	1100
	L_{1}					600	650	650	650	700	700
65	L						1100	1100	1100	1100	1100
	L_{1}						650	650	650	700	700
80	L							1200	1200	1200	1200
	L_{1}							650	650	700	700
100	L								1200	1200	1200
	L_{1}								650	700	700
125	L									1300	1300
	L_{1}									700	700
150	L										1300
	L_{1}										700

$\mathbf{d}_{\mathbf{a}}=$ Steel pipe outside diameter in mm
$\mathbf{L}=$ Construction length passage in mm
$L_{1}=$ Construction axis length exit in mm
$\mathbf{s}=$ Steel pipe wall thickness acc．to isoplus in mm
$\mathbf{D}_{\mathbf{a}}=$ Jacket－pipe outside diameter in mm
The mentioned steel pipe wall thicknesses are corresponding with the minimum requirements acc．to the standard respectively to the isoplus standard wall thicknesses．Length of bare steel pipe ends： $220 \mathrm{~mm} \pm 10 \mathrm{~mm}$ ．

For reasons of optimization and in order to follow the actual technical standard we will reserve modifications of dimensions as well as technical modifications．No obligation can be derived in case of possible dimension variations as well as in case of technical modifications．

2 RIGID COMPOUND SYSTEMS

2.2 isoplus - Single Pipe (isopipe ${ }^{\oplus}$-Single)

90º Vertical-Branch / Insulation Class 2x reinforced

Dimensions Insulation Class 2x reinforced

	Transmission respectively main pipe dimensions								
	DN	200	250	300	350	400	450	500	600
	Inch	$8{ }^{\text {a }}$	10"	12"	14"	16 "	18"	20"	24"
	d_{a}	219,1	273,0	323,9	355,6	406,4	457,2	508,0	610,0
	s	4,5	5,0	5,6	5,6	6,3	6,3	6,3	7,1
DN	D_{a}	400	500	450	560	670	710	800	1000
20	L	1100	1100	1100	1100	1100	1100	1100	1100
	L_{1}	700	800	800	800	800	900	900	1000
25	L	1100	1100	1100	1100	1100	1100	1100	1100
	L_{1}	700	800	800	800	800	900	900	1000
32	L	1100	1100	1100	1100	1100	1100	1100	1100
	L_{1}	700	800	800	800	800	900	900	1000
40	L	1100	1100	1100	1100	1100	1100	1100	1100
	L_{1}	700	800	800	800	800	900	900	1000
50	L	1100	1100	1100	1100	1100	1100	1100	1100
	L_{1}	700	800	800	800	800	900	900	1000
65	L	1100	1100	1100	1100	1100	1100	1100	1100
	L_{1}	700	800	800	800	800	900	900	1000
80	L	1200	1200	1200	1200	1200	1200	1200	1200
	L_{1}	700	800	800	800	800	900	900	1000
100	L	1200	1200	1200	1200	1200	1200	1200	1200
	L_{1}	700	800	800	800	800	900	900	1000
125	L	1300	1300	1300	1300	1300	1300	1300	1300
	L_{1}	700	800	800	800	800	900	900	1000
150	L	1300	1300	1300	1300	1300	1300	1300	1300
	L_{1}	700	800	800	800	800	900	900	1000
200	L	1400	1400	1400	1400	1400	1400	1400	1400
	L_{1}	700	800	800	800	800	900	900	1000
250	L		1500	1500	1500	1500	1500	1500	1500
	L_{1}		800	800	800	800	900	900	1000
300	L			1600	1600	1600	1600	1600	1600
	L_{1}			800	800	800	900	900	1000
350	L				1700	1700	1700	1700	1700
	L_{1}				800	800	900	900	1000
400	L					1700	1700	1700	1700
	L_{1}					800	900	900	1000
450	L						1800	1800	1800
	L_{1}						900	900	1000
500	L							1800	1800
	L_{1}							900	1000
600	L								2000
	L_{1}								1000

ATTENTION: Insulation class 2 x reinforced are special products. Please check availability in case of request.
2.2.9 Drain / Vent - Branch

Dimensions carrier pipe				Jacket-Pipe-Outsidediameter $\mathbf{D}_{\mathrm{a} 1}$ in mm			Drain / Vent			Overalllength L in mm	
Nominal Diameter / Dimension in		$\begin{aligned} & \text { Outside- } \\ & \varnothing \\ & d_{a 1} \\ & \text { in } \mathrm{mm} \end{aligned}$	Wallthickness s in mm				Nom. Diameter in DN	Jack.-P.- $\mathbf{D}_{\mathrm{a} 2}$ in mm Standard	Overallheight h in mm		
		Insulation Class									
DN	Inch			Standard	1x reinforced	2x reinforced					
25	1 "		33,7	3,2	90	110	125	25	90	1000	1100
32	$11 / 4^{\prime \prime}$	42,4	3,2	110	125	140	25	90	1000	1100	
40	$11 / 2^{\prime \prime}$	48,3	3,2	110	125	140	25	90	1000	1100	
50	2 "	60,3	3,2	125	140	160	25	90	1000	1100	
65	21/2"	76,1	3,2	140	160	180	25	90	1000	1100	
80	3 "	88,9	3,2	160	180	200	50	125	1000	1100	
100	4"	114,3	3,6	200	225	250	50	125	1000	1100	
125	5"	139,7	3,6	225	250	280	50	125	1000	1100	
150	6"	168,3	4,0	250	280	315	50	125	1000	1100	
200	8"	219,1	4,5	315	355	400	50	125	1000	1100	
≥ 250	10"	273,0	5,0	400	450	500	50	125	1000	1200	

ATTENTION: Italicised mentioned jacket-pipe dimensions (*) are special productions. Please check availability in case of requirement. The ELE-/ELÜ ball-valve is made only in the mentioned sizes with standard insulation thickness. Other insulation thickness is not available!

Carrier Pipe with corresponding wall thickness like the pipe bars. From wall thickness $>3,0 \mathrm{~mm}$ with weld seam preparation by 30° bevelled ends acc. to DIN EN ISO 9692-1. Length of bare steel pipe ends: $220 \mathrm{~mm} \pm 10 \mathrm{~mm}$.

Carried out as a vertical branch in accordance with chapter 2.2.8. At the outlet end, however, an ELE-/ELÜ ball valve (reduced bore) is fitted with a stainless steel housing and internal thread connection together with the associated plug. The factory fitted shrunk-on end cap is between the HDPE casing pipe end and the ball valve. For a detailed description of the ELE-/ELÜ- ball valve see chapter 2.2.10.

Assembling hint see chapter 10.2.6
Material specification jacket pipe see chapter 2.1.4
Material specification carrier pipe see chapter 2.2.1.
Material specification PUR-Hard foam see chapter 7.1.7

2.2 isoplus - Single Pipe (isopipe ${ }^{\text {® }}$-Single)

2.2.10 Drain / Vent - Pipe

As an alternative to the ELE-/ELÜ branch, it is possible to put together drainage or vents on site using a modular principle. Here the ELE-/ELÜ pipe is to be welded on to a vertical branch as in chapter 2.2.8. This has the advantage that the height of the ELE-/ELÜ ball valve can be exactly adapted to local conditions. The PEHD casing pipe coupler required for this is not included with the ELE-/ELÜ pipe.

Carrier Pipe with corresponding wall thickness like the pipe bars. From wall thickness $>3,0 \mathrm{~mm}$ with weld seam preparation by 30° bevelled ends acc. to DIN EN ISO 9692-1. Length of bare steel pipe ends: $220 \mathrm{~mm} \pm 10 \mathrm{~mm}$.

At the end of the tube is an ELE-/ELÜ ball valve (reduced bore) mounted with a stainless steel housing and internal thread connection and the associated end cap. The factory fitted shrunk on end cap is between the PEHD casing pipe end and the ball valve.

The valve housing and valve plug of the ball valve are made of stainless steel, material no. 1.4301 with a cylindrical internal or external thread conforming to DIN EN 10226-1 or DIN EN ISO 228-1. The actuation of the ball valve is with a No. 19 Allen key, the position indicator is on the housing. To fit the plug a No. 19 Allen key is required for DN 25 and No. 27 for DN 50.

2 RIGID COMPOUND SYSTEMS 2.2 isoplus - Single Pipe (isopipe ${ }^{\circledR}$-Single)

2.2.11 Reducing Piece

In order to avoid not permissible high frontal soilpressure loads due to axial expansion movements, it may be reduced maximal about two nominal diameters. At the bonding area of a thermal prestressed line generally only one dimension step will be allowed.

The reducing piece has to be padded generally at the centric jacket-pipe reduction. The expansion pad is not included in the delivery range of the reducing piece.

As carrier pipe reduction generally a conical respectively a centric steel piece acc. to DIN 10253-2 with welded pipe-socket will be used.

From wall thickness > $3,0 \mathrm{~mm}$ with weld seam preparation by 30° bevelled ends acc. to DIN EN ISO $9692-1$. Length of bare steel pipe ends: $220 \mathrm{~mm} \pm 10 \mathrm{~mm}$.

Cylindrical pipe depending on size available as seamless or welded steel with corresponding wall thickness like the pipe bars.

Material specification jacket pipe see chapter 2.1.4
Material specification carrier pipe see chapter 2.2.1
Material specification PUR-Hard foam see chapter 7.1.7

2 RIGID COMPOUND SYSTEMS

2.2 isoplus - Single Pipe (isopipe ${ }^{\oplus}$-Single)

Dimensions Reducing Piece

Nominal Dimension 1					Nominal Dimension 2					Overalllength L in mm
Carrier Pipe		Jacket-Pipe-Outside- \varnothing $D_{a 1}$ in mm			Carrier Pipe		Jacket-Pipe-Outside- \varnothing $\mathrm{D}_{\mathrm{a} 2}$ in mm			
Nominal	Outside-Ø				Nominal Dimension	$\begin{array}{\|c\|} \hline \text { Outside- } \varnothing \\ d_{\mathrm{a} 2} \\ \text { in } \mathrm{mm} \end{array}$				
Dimension	$\mathrm{d}_{\mathrm{a} 1}$		ulation C				Insulation Class			
DN	in mm	Standard	1x reinf.	2x reinf.	DN		Standard	1x reinf.	2x reinf.	
25	33,7	90	110	125	20	26,9	90	110	125	1500
32	42,4	110	125	140	25 20	33,7 26,9	90 90	110 110	$\begin{aligned} & 125 \\ & 125 \end{aligned}$	1500
40	48,3	110	125	140	$\begin{aligned} & 32 \\ & 25 \end{aligned}$	42,4 33,7	110 90	125 110	$\begin{aligned} & 140 \\ & 125 \end{aligned}$	1500
50	60,3	125	140	160	40 32	48,3 42,4	110 110	125 125	140 140	1500
65	76,1	140	160	180	50 40	60,3 48,3	125 110	140 125	$\begin{aligned} & 160 \\ & 140 \end{aligned}$	1500
80	88,9	160	180	200	$\begin{aligned} & 65 \\ & 50 \end{aligned}$	76,1 60,3	140 125	$\begin{aligned} & 160 \\ & 140 \end{aligned}$	$\begin{aligned} & 180 \\ & 160 \end{aligned}$	1500
100	114,3	200	225	250	$\begin{aligned} & 80 \\ & 65 \end{aligned}$	88,9	160 140	180	200	1500
125	139,7	225	250	280	$\begin{aligned} & 100 \\ & 80 \end{aligned}$	$\begin{gathered} 114,3 \\ 88,9 \\ \hline \end{gathered}$	$\begin{aligned} & 200 \\ & 160 \end{aligned}$	$\begin{aligned} & 225 \\ & 180 \end{aligned}$	$\begin{aligned} & 250 \\ & 200 \end{aligned}$	1500
150	168,3	250	280	315	$\begin{aligned} & 125 \\ & 100 \end{aligned}$	139,7 114,3	$\begin{aligned} & 225 \\ & 200 \end{aligned}$	250	$\begin{aligned} & 280 \\ & 250 \end{aligned}$	1500
200	219,1	315	355	400	$\begin{aligned} & 150 \\ & 125 \end{aligned}$	$\begin{aligned} & 168,3 \\ & 139,7 \end{aligned}$	$\begin{aligned} & 250 \\ & 225 \end{aligned}$	280 250	$\begin{aligned} & 315 \\ & 280 \end{aligned}$	1500
250	273,0	400	450	500	200	219,1 168,3	315 250	355 280	$\begin{aligned} & 400 \\ & 315 \end{aligned}$	1500
300	323,9	450	500	560	250	273,0 219,1	400 315	450 355	500 400	1500
350	355,6	500	560	630	$\begin{aligned} & 300 \\ & 250 \end{aligned}$	323,9 273,0	450	500 450	$\begin{aligned} & 560 \\ & 500 \end{aligned}$	1500
400	406,4	560	630	670	$\begin{aligned} & 350 \\ & 300 \end{aligned}$	355,6 323,9	$\begin{aligned} & 500 \\ & 450 \end{aligned}$	$\begin{aligned} & 560 \\ & 500 \end{aligned}$	$\begin{aligned} & 630 \\ & 560 \end{aligned}$	1500
450	457,0	630	670	710	400	406,4 355,6	560	630	670	1500
500	508,0	670	710	800	450	457,0 406,4	630 560	670 630	$\begin{aligned} & 710 \\ & 670 \end{aligned}$	1500
600	610,0	800	900	1000	$\begin{array}{r} 500 \\ 450 \\ \hline \end{array}$	$\begin{array}{r} 508,0 \\ 457,0 \\ \hline \end{array}$	$\begin{aligned} & 670 \\ & 630 \\ & \hline \end{aligned}$	$\begin{aligned} & 710 \\ & 670 \\ & \hline \end{aligned}$	$\begin{aligned} & 800 \\ & 710 \\ & \hline \end{aligned}$	1500

ATTENTION: Italicised mentioned jacket-pipe dimensions (*) are special productions. Please check availability in case of requirement.
Material specification jacket pipe see chapter 2.1.4
Material specification carrier pipe see chapter 2.2.1.
Material specification PUR-Hard Foam see chapter 7.1.7.

2.2.12 Anchor

Dimensions Carrier Pipe				Jacket-Pipe OutsideDiameter $\mathbf{D}_{\mathbf{a}}$ in mm			Minimum Dimensions Steel Flange		Overalllength L in mm	
Nominal Diameter / Dimension in		$\begin{aligned} & \text { Outside- } \\ & \quad \varnothing \\ & d_{a} \\ & \text { in } m \mathrm{~mm} \end{aligned}$	Wallthickness s in mm							
		Lateral Length $a \cdot b$ in mm					Steel-thickness s in mm			
		Insulation Class								
DN	Inch			Standard	1x reinforced	2x reinforced				
20	3/4"		26,9	2,6	90	110	125	$200 \cdot 200$	15	2000
25	1 "	33,7	3,2	90	110	125	$200 \cdot 200$	15	2000	
32	11/4"	42,4	3,2	110	125	140	$200 \cdot 200$	15	2000	
40	$11 / 2^{\text {a }}$	48,3	3,2	110	125	140	$200 \cdot 200$	15	2000	
50	2 "	60,3	3,2	125	140	160	$250 \cdot 250$	20	2000	
65	$2^{1 / 2}{ }^{\text {a }}$	76,1	3,2	140	160	180	$250 \cdot 250$	20	2000	
80	$3{ }^{\text {a }}$	88,9	3,2	160	180	200	$250 \cdot 250$	20	2000	
100	4 "	114,3	3,6	200	225	250	$330 \cdot 330$	25	2000	
125	5 "	139,7	3,6	225	250	280	$330 \cdot 330$	25	2000	
150	6 "	168,3	4,0	250	280	315	$380 \cdot 380$	25	2000	
200	$8{ }^{\text {" }}$	219,1	4,5	315	355	400	$500 \cdot 500$	25	2000	
250	$10^{\prime \prime}$	273,0	5,0	400	450	500	$600 \cdot 600$	30	2000	
300	12"	323,9	5,6	450	500	560	$700 \cdot 700$	30	2000	

ATTENTION: Anchors are special productions. Please check availability in case of requirement.
The mentioned steel pipe wall thicknesses are corresponding with the minimum requirements acc. to the standard respectively to the isoplus standard wall thicknesses. These have to be calculated generally against inside pressure [p] according to DIN 2413. Carrier pipe with corresponding wall thickness as the rigid pipe bars. From wall thickness $>3,0 \mathrm{~mm}$ with weld seam preparation by 30° bevelled ends acc. to DIN EN ISO 9692-1. Length of bare steel pipe ends: $220 \mathrm{~mm} \pm 10 \mathrm{~mm}$.

Steel flange at anchor quadric in discoid construction, designed for max. load of $L_{\text {max }} / 2$. The occurring forces will be transferred via this flange to the corresponding dimensioned concreteblock. Two kinds of construction are available:

Type A: Standard-construction
Type B: Thermal- and electrical seperated construction

Material specification jacket pipe see chapter 2.1.4
Material specification carrier pipe see chapter 2.2.1
Material specification PUR-Hard Foam see chapter 7.1.7
Assembling anchor - concrete block in B 25 see chapter 10.2.7

2 RIGID COMPOUND SYSTEMS

2.3 isoplus - Double Pipe (isopipe ${ }^{\circledR}$-Double)

2.3.1 Advantages / Carrier Pipe / Connection Technology / Operating Conditions

Advantages

\Rightarrow essential less heat-loss, more economic production of preinstalled pipe system
$\Rightarrow 50 \%$ reduced use of connection couplers
\Rightarrow essential reduction of expansion pads at angles and T-pieces
\Rightarrow more fast total construction time, shorter traffic hindrance etc.
\Rightarrow pipe-static dimensioning only for medium temperature of primary- and secondary line
\Rightarrow no trench jumps at branches (flow- and exit on same level)
\Rightarrow no additional fittings are required for expansion compensation
\Rightarrow double working distance of leak detecting- and location systems
\Rightarrow reduced excavated material and re-installation

Carrier Pipe, welded

Welded, circular, unalloyed and calmed down steel, description and technical conditions acc. to EN 253, EN 10217-1 and -2.

Materials P235GH (1.0345), P235TR1 (1.0254), P235TR2 (1.0255). All pipes acc. to EN 10204-3.1 with acceptance certificate (APZ) approved. From wall thickness > $3,0 \mathrm{~mm}$ with welding-seam preparation by 30° bevelled ends acc. to DIN EN ISO 9692-1.

ATTENTION: For the production of isopipe ${ }^{\circledR}$-Double exclusively welded carrier pipe is used.

Connection Technology

The joints between the steel pipes can be made using the following methods according to DIN ISO 857-1: manual arc welding, gas welding with oxygen-acetylene flame, tungsten inert gas (TIG) or a combination of processes. The testing and evaluation of the quality of the weld is according to AGFW Worksheet FW 446.

Operating Conditions

Maximum operating temperature $\mathrm{T}_{\text {max }}:$	at least acc. to EN 253
Maximum permissible Spread $\mathrm{VL} / \mathrm{RL}(\Delta \mathrm{T}):$	90 K
Maximum operating pressure $\mathrm{p}_{B}:$	25 bar
Maximum permissible axial-tension $\sigma_{\text {max }}:$	$190 \mathrm{~N} / \mathrm{mm}^{2}$
Leak detecting:	IPS-Cu ${ }^{\oplus}$ and IPS-NiCre ${ }^{\oplus}$,
	at continuous production only IPS-Cu®
Possible liquids: Heating water as well as other material resistant liquids	

Technical data P235TR1/TR2/GH bei $\mathbf{2 0}^{\circ} \mathbf{C}$						
Property	Unit	Value	Property	Unit	Value	
Volume weight ρ	$\mathrm{kg} / \mathrm{dm}^{3}$	7,85	Elastic modulus E	$\mathrm{~N} / \mathrm{mm}^{2}$	211.800	
Tensile stress R_{m}	$\mathrm{~N} / \mathrm{mm}^{2}$	$360-500$	Thermal conductivity λ	$\mathrm{W} /(\mathrm{m} \bullet \mathrm{K})$	55,2	
Yield stress R_{e}	$\mathrm{~N} / \mathrm{mm}^{2}$	235	Specific heat capacity c_{m}	$\mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{C}$	0,46	
Wall roughness k	mm	0,02	Thermal expansion coeff. α at $\mathrm{T}_{\max }$	K^{-1}	$11,3 \bullet 10^{-6}$	

Carrier pipe wall thickness see chapter 2.3.2 resp. 2.3.3.

2 RIGID COMPOUND SYSTEMS

2.3 isoplus - Double Pipe (isopipe ${ }^{\circledR}$-Double)

2.3.2 Dimensions resp. Types - straight pipe bar - Disconti

Discontinuous production - Carrier Pipe, welded

Dimensions Steel Pipe P235TR1 / TR2 / GH						Dimensions Jacket-Pipe PEHD PEHD - Jacket-Pipe-Outside- \varnothing • Wall thickness $\mathrm{D}_{\mathrm{a}} \cdot \mathrm{s}$ in mm								Clear Pipedistance h_{s} in mm	Weight withoutWater\mathbf{G}in kg / m(s acc. to isoplus)		
Type	Nominal Diameter / Dimension in		Outside- d_{a} in mm	Wall- thickness acc. to isoplus s in mm	Wall- thickness acc. to EN 253 \mathbf{s} in mm												
			Insulation Class / Del. length L in m			Insulati	Class										
	DN	Inch				Standard	6	12	16	1x reinforced	16				Standard	1x rein	
DRD-20	20	3/4"		2 •26,9	2,6	2,0	125 • 3,0		\checkmark	-	140 • 3,0				19	4,92	5,27
DRD-25	25	1 "	$2 \cdot 33,7$	3,2	2,3	140 • 3,0	,	\checkmark	-	$160 \cdot 3,0$,			19	6,91	7,41	
DRD-32	32	$11 / 4{ }^{\prime \prime}$	$2 \cdot 42,4$	3,2	2,6	160 • 3,0		,	-	$180 \cdot 3,0$,		-	19	8,70	9,23	
DRD-40	40	11/2"	$2 \cdot 48,3$	3,2	2,6	$160 \cdot 3,0$		\checkmark		$180 \cdot 3,0$	\checkmark	,		19	9,58	10,11	
DRD-50	50	2 "	2•60,3	3,2	2,9	200 • 3,2	\checkmark	\checkmark	-	225 • 3,4	\checkmark	,	-	20	12,56	13,49	
DRD-65	65	21/2"	2-76,1	3,2	2,9	225 • 3,4	\checkmark	,	-	250 • 3,6	\checkmark	\checkmark	-	20	15,73	16,75	
DRD-80	80	3 "	$2 \cdot 88,9$	3,2	3,2	250 • 3,6	\checkmark	\checkmark	-	$280 \cdot 3,9$	\checkmark	\checkmark	-	25	18,54	19,93	
DRD-100	100	4"	$2 \cdot 114,3$	3,6	3,6	315 • 4,1	\checkmark	\checkmark	\checkmark	355 • 4,5	\checkmark	\checkmark	\checkmark	25	27,20	29,52	
DRD-125	125	5 "	$2 \cdot 139,7$	3,6	3,6	400 • 4,8	\checkmark	\checkmark	\checkmark	$450 \cdot 5,2$	\checkmark	\checkmark	\checkmark	30	36,05	39,54	
DRD-150	150	6 "	$2 \cdot 168,3$	4,0	4,0	450 • 5,2	\checkmark	,	\checkmark	500 • 5,6	\checkmark	\checkmark	\checkmark	40	46,83	50,70	
DRD-200	200	8"	$2 \cdot 219,1$	4,5	4,5	560 • 6,0	\checkmark	,	J	$630 \cdot 6,6$	\checkmark	\checkmark	\checkmark	45	70,61	75,56	

For nominal diameters DN 25 to DN 65 isoplus provides only steel pipes and fittings with wall thickness of $3,2 \mathrm{~mm}$, this is to observe in comparison with competitors.

Length of bare steel pipe ends: $220 \mathrm{~mm} \pm 10 \mathrm{~mm}$. Wall thickness jacket pipe isoplus acc. to EN 253, Wall thickness carrier pipe isoplus acc. to AGFW FW 401. The mentioned steel wall thicknesses are corresponding with the standard wall thicknesses of isoplus, which are generally calculated against inside pressure [p] acc. to DIN 2413. The mentioned weights are valid for steel wall thickness acc. to isoplus, material density $[\rho]$ P235 $=\varnothing 7,85 \mathrm{~kg} / \mathrm{dm}^{3}$, PUR-Foam $=\varnothing 0,07 \mathrm{~kg} / \mathrm{dm}^{3}$, PEHD $=\varnothing 0,95 \mathrm{~kg} / \mathrm{dm}^{3}$.

Auxiliary ridges may be located in the pipe bars. However, these have no pipe-static function. They serve only as a centering during production. In order to improve and to follow the technical development we will reserve technical modifications of the values mentioned in the table.

2 RIGID COMPOUND SYSTEMS

2.3 isoplus - Double Pipe (isopipe ${ }^{\circledR}$-Double)

2.3.2 Dimensions resp. Types - straight pipe bar - Conti

Continuous Production - Carrier-Pipe, welded

Dimensions Carrier pipe P235TR1 / TR2 / GH						Dimensions Jacket-Pipe PEHD PEHD - Jacket-Pipe Outside- \varnothing - Wall thickness $\mathrm{D}_{\mathrm{a}} \cdot \mathrm{s}$ in mm								Clear Pipe- distance h_{s} in mm	Weight withoutWaterGin kg / m(s acc. to isoplus)		
Type	Nominal Diameter / Dimension in		Outside- d_{a} in mm	Wall- thickn. acc. to isoplus s in mm	Wallthickn. acc. to EN 253 s in mm												
			Insulation				1216		$\begin{array}{\|c\|c\|} \hline & \text { Del. Length } \\ \hline 6 & 1 \times \text { reinf. } \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { L in } \mathrm{m} \\ \hline 6 & 12 \\ \hline \end{array}$			Insula		Class		
	DN	Inch				$6{ }^{1}$						Standard	1x reinf.				
KRD-25	25	1"	$2 \cdot 33,7$	3,2	2,3	140 • 3,0		\checkmark			$160 \cdot 3,0$				19	6,83	7,36
KRD-32	32	11/4"	2 • 42,4	3,2	2,6	$160 \cdot 3,0$	-	,		$180 \cdot 3,0$,		19	8,61	9,18	
KRD-40	40	11/2"	2 • 48,3	3,2	2,6	160 • 3,0	-	,		$180 \cdot 3,0$,	-	19	9,46	10,03	
KRD-50	50	2 "	2 -60,3	3,2	2,9	200 • 3,2	-	\checkmark		$225 \cdot 3,4$		\checkmark		20	12,84	13,77	
KRD-65	65	21/2"	2•76,1	3,2	2,9	225 • 3,4	-	,		$250 \cdot 3,6$	-	\checkmark	-	20	15,92	17,05	
KRD-80	80	3 "	2 •88,9	3,2	3,2	250 • 3,6	-	\checkmark		$280 \cdot 3,9$	-	,	-	25	18,76	20,20	
KRD-100	100	4"	$2 \cdot 114,3$	3,6	3,6	315 • 4,1	-		-	355 • 4,5	-	\checkmark		25	27,62	30,42	

For nominal diameters DN 25 to DN 65 isoplus provides only steel pipes and fittings with wall thickness of $3,2 \mathrm{~mm}$, this is to observe in comparison with competitors.

Length of bare steel pipe ends: $220 \mathrm{~mm} \pm 10 \mathrm{~mm}$. Wall thickness jacket pipe isoplus acc. to EN 253, Wall thickness carrier pipe isoplus acc. to AGFW FW 401. The mentioned steel wall thicknesses are corresponding with the standard wall thicknesses of isoplus, which are generally calculated against inside pressure [p] acc. to DIN 2413. The mentioned weights are valid for steel wall thickness acc. to isoplus, material density $[\rho]$ P235 $=\varnothing 7,85 \mathrm{~kg} / \mathrm{dm}^{3}$, PUR-Foam $=\varnothing 0,07 \mathrm{~kg} / \mathrm{dm}^{3}$, PEHD $=\varnothing 0,95 \mathrm{~kg} / \mathrm{dm}^{3}$.

2 RIGID COMPOUND SYSTEMS

2.3 isoplus - Double Pipe (isopipe ${ }^{\circledR}$-Double)

2.3.4 Dimensions resp. Types - Bowed Pipe

Discontinuous und continuous production

Dimensions carrier pipe		Max. permissible bow-angle$\qquad$$\alpha_{\max }$$\text { in }^{\circ}$	Minimum-bendingradius $\mathbf{r}_{\text {F min }}$ in m	Circle segment at $\mathrm{r}_{\text {Fmin }}$ and 12,00 m		
Nominal Diameter in DN	$\begin{gathered} \hline \text { Outside- } \\ \varnothing \\ d_{a} \\ \text { in } \mathrm{mm} \\ \hline \end{gathered}$			$\begin{gathered} \text { Secant- } \\ \text { length } \\ \mathbf{s}_{\mathrm{L}} \\ \text { in } \mathrm{m} \end{gathered}$	Secantheight \mathbf{S}_{hF} in m	```Tangent- length tL in m```
50	$2 \cdot 60,3$	40,0	11,75	11,56	1,28	6,15
65	$2 \cdot 76,1$	36,0	13,05	11,64	1,15	6,12
80	$2 \cdot 88,9$	34,0	13,82	11,68	1,09	6,11
100	$2 \cdot 114,3$	28,0	16,78	11,78	0,90	6,07
125	$2 \cdot 139,7$	28,0	16,78	11,78	0,90	6,07
150	$2 \cdot 168,3$	25,0	18,80	11,83	0,80	6,06
200	$2 \cdot 219,1$	22,5	15,30	11,86	0,83	6,05

The double pipe / bowed pipe production used at the factory is only possible with a high density polyethylene jacket in 12 m lengths and only above a nominal diameter of DN 50 . The values given in the table are valid regardless of the PEHD casing pipe diameter (standard or 1 x reinforced). For nominal diameters DN 20 to DN 80, it is usually sufficient to compensate for pipe elbows with on-site bending (elastic distortion of a pipe length).

Due to production constraints, bowed pipes of up to PEHD casing pipe diameters $D_{a} \leq 450 \mathrm{~mm}$ have $2,0 \mathrm{~m}$ long straight pipe ends, while from $\mathbf{D}_{\mathbf{a}} \geq 500$ these ends are approximately $3,0 \mathrm{~m}$ long. For this reason, the production bending radius $\left[r_{F}\right]$ is also different from the design radius $\left[r_{p}\right]$, see chapter 2.2.4.

Bowed pipes are bent mechanically according to the route of the pipeline and the permitted production bending radius, according to local management instructions (bending angle and design radius). When ordering, the angle, design radius and bending direction, left or right (depending on the route of the network monitoring) should be given. If necessary, these parameters are determined by isoplus.

2 RIGID COMPOUND SYSTEMS

2.3 isoplus - Double Pipe (isopipe ${ }^{\circledR}$-Double)

2.3.5 Energy Loss isoplus - Double Pipe Disconti

Type	Jacket-Pipe OutsideDiameter $\mathbf{D}_{\mathbf{a}}$ in mm		$\begin{gathered} \text { Coefficient } \\ u_{\text {ord }} \\ \text { in } W /(\mathrm{m} \bullet \mathrm{~K}) \end{gathered}$		q at average temperature $\mathrm{T}_{\mathrm{M}}=$ 100 K in W / m		q at average temperature $\mathbf{T}_{\mathrm{M}}=$ 60 K in W / m		q at average temperature $\mathbf{T}_{\mathbf{M}}=$ 50 K in W / m	
	Insulation Class									
	Standard	$1 \times$ reinforced	Standard	1 x reinforced	Standard	$1 \times$ reinforced	Standard	$1 \times$ reinforced	Standard	$1 \times$ reinforced
DRD - 20	125	140	0,2039	0,1841	20,382	18,405	14,271	12,887	10,197	9,208
DRD - 25	140	160	0,2227	0,1954	22,269	19,539	15,592	13,680	11,141	9,775
DRD - 32	160	180	0,2424	0,2133	24,237	21,320	16,971	14,929	12,128	10,668
DRD - 40	160	180	0,2858	0,2425	28,567	24,241	20,003	16,974	14,293	12,129
DRD - 50	200	225	0,2797	0,2407	27,963	24,065	19,580	16,851	13,992	12,041
DRD - 65	225	250	0,3293	0,2775	32,917	27,746	23,049	19,427	16,470	13,882
DRD - 80	250	280	0,3710	0,2970	37,091	29,689	25,970	20,789	18,556	14,856
DRD - 100	315	355	0,3748	0,2996	37,474	29,952	26,237	20,975	18,746	14,990
DRD - 125	400	450	0,3630	0,2928	36,291	29,266	25,411	20,495	18,157	14,648
DRD - 150	450	500	0,4192	0,3301	41,911	32,991	29,343	23,104	20,965	16,513
DRD - 200	560	630	0,4754	0,3492	47,538	34,901	33,278	24,442	23,772	17,469

Energy Loss Comparison Double- to Single Pipe, $\mathrm{T}_{\mathrm{M}}=70 \mathrm{~K}$, discontinuous production

Double Pipe - Standard			2x Single Pipe - Standard Insulation Class				2x Single Pipe - 1x reinf. Insulation Class			
	Heat Loss		PEHD- \varnothing	Heat Loss		Saving in \%	$\begin{aligned} & \text { PEHD- } \varnothing \\ & \mathbf{D}_{\mathrm{a}} \\ & \text { in } \mathrm{mm} \\ & \hline \end{aligned}$	Heat Loss		Saving in \%
Type	$\begin{gathered} \mathbf{u}_{\mathrm{DRD}} \text { in } \\ \mathrm{W} /(\mathrm{m} \cdot \mathrm{~K}) \end{gathered}$	$\begin{gathered} \mathrm{q}_{\mathrm{DRD}} \\ \text { in W/m } \end{gathered}$	$\begin{gathered} \mathbf{D}_{\mathbf{a}} \\ \text { in } \mathrm{mm} \\ \hline \end{gathered}$	$\mathbf{u}_{\text {DRE }}$ in W/(m•K)	$\begin{gathered} \mathrm{q}_{\mathrm{DRE}} \\ \text { in } \mathrm{W} / \mathrm{m} \end{gathered}$			$u_{\text {DRE }}$ in $\mathrm{W} /(\mathrm{m} \bullet \mathrm{K})$	$\begin{gathered} \text { qDRE } \\ \text { in } W / m \end{gathered}$	
DRD - 20	0,2039	14,271	90	0,2673	18,713	23,74	110	0,2299	16,090	11,30
DRD - 25	0,2227	15,592	90	0,3251	22,754	31,47	110	0,2713	18,989	17,89
DRD - 32	0,2424	16,971	110	0,3323	23,260	27,04	125	0,2946	20,623	17,71
DRD - 40	0,2858	20,003	110	0,3809	26,662	24,98	125	0,3322	23,254	13,98
DRD - 50	0,2797	19,580	125	0,4244	29,710	34,10	140	0,3710	25,973	24,61
DRD - 65	0,3293	23,049	140	0,4977	34,839	33,84	160	0,4155	29,088	20,76
DRD - 80	0,3710	25,970	160	0,5133	35,930	27,72	180	0,4354	30,476	14,78
DRD - 100	0,3748	26,237	200	0,5440	38,077	31,09	225	0,4571	31,995	18,00
DRD - 125	0,3630	25,411	225	0,6264	43,850	42,05	250	0,5254	36,781	30,91
DRD - 150	0,4192	29,343	250	0,7384	51,691	43,23	280	0,5937	41,558	29,39
DRD - 200	0,4754	33,278	315	0,8035	56,242	40,83	355	0,6308	44,156	24,63

Double Pipe - 1x reinforced			2x Single Pipe - 1 x reinf. Insulation Class				2x Single Pipe - 2 x reinf. Insulation Class			
Type	Heat Loss		PEHD- $\varnothing$$\mathbf{D}_{\mathbf{a}}$in mm	Heat Loss		Saving in \%	PEHD- $\varnothing$$\mathbf{D}_{\mathbf{a}}$in mm	Heat Loss		$\begin{aligned} & \text { Saving } \\ & \text { in \% } \end{aligned}$
	$\begin{gathered} \mathbf{u}_{\mathrm{DRD}} \text { in } \\ \mathrm{W} /(\mathrm{m} \bullet \mathrm{~K}) \end{gathered}$	$\begin{gathered} \mathrm{q}_{\mathrm{DRD}} \\ \text { in W/m } \end{gathered}$		$\begin{gathered} \mathbf{u}_{\text {DRE }} \text { in } \\ \mathrm{W} /(\mathrm{m} \bullet \mathrm{~K}) \end{gathered}$	$\begin{gathered} \mathrm{q}_{\mathrm{DRE}} \\ \text { in } \mathrm{W} / \mathrm{m} \end{gathered}$			$\begin{gathered} \mathbf{u}_{\text {DRE }} \text { in } \\ \mathrm{W} /(\mathrm{m} \cdot \mathrm{~K}) \end{gathered}$	$\begin{array}{r} \text { q}_{\text {DRE }} \\ \text { in W/m } \\ \hline \end{array}$	
DRD - 20	0,1841	12,887	110	0,2299	16,090	19,91	125	0,2112	14,782	12,82
DRD - 25	0,1954	13,680	110	0,2713	18,989	27,96	125	0,2456	17,194	20,44
DRD - 32	0,2133	14,929	125	0,2946	20,623	27,61	140	0,2679	18,751	20,38
DRD - 40	0,2425	16,974	125	0,3322	23,254	27,01	140	0,2986	20,901	18,79
DRD - 50	0,2407	16,851	140	0,3710	25,973	35,12	160	0,3234	22,636	25,56
DRD - 65	0,2775	19,427	160	0,4155	29,088	33,21	180	0,3630	25,407	23,54
DRD - 80	0,2970	20,789	180	0,4354	30,476	31,79	200	0,3877	27,141	23,40
DRD - 100	0,2996	20,975	225	0,4571	31,995	34,44	250	0,4009	28,061	25,25
DRD - 125	0,2928	20,495	250	0,5254	36,781	44,28	280	0,4478	31,343	34,61
DRD - 150	0,3301	23,104	280	0,5937	41,558	44,41	315	0,4945	34,618	33,26
DRD - 200	0,3492	24,442	355	0,6308	44,156	44,65	400	0,5190	36,327	32,72

The mentioned data are based on a covering height $\left[\mathrm{U}_{\mathrm{H}}\right]$ of $0,60 \mathrm{~m}$, a thermal conductivity of soil $\left[\lambda_{\mathrm{E}}\right]$ of 1,2 $\mathrm{W} /(\mathrm{m} \bullet \mathrm{K})$, a soil temperature $\left[T_{E}\right]$ of $10^{\circ} \mathrm{C}$ as well as a pipe distance of 150 mm at single-pipes;
$\mathrm{T}_{\mathrm{M}}=\left(\mathrm{T}_{\mathrm{VL}}+\mathrm{T}_{\mathrm{RL}}\right): 2-\mathrm{T}_{\mathrm{E}} \Rightarrow$ Example: $\left(100^{\circ}+60^{\circ}\right): 2-10^{\circ}=70 \mathrm{~K}$.

2.3 isoplus - Double Pipe (isopipe ${ }^{\circledR}$-Double)

2.3.6 Energy Loss isoplus - Double Pipe Conti

Type	Jacket-Pipe OutsideDiameter $\mathbf{D a}_{\mathbf{a}}$ in mm		$\begin{gathered} \hline \text { Coefficient } \\ \mathbf{u}_{\text {KRD }} \\ \text { in } W /(\mathrm{m} \bullet \mathrm{~K}) \\ \hline \end{gathered}$		q at averagetemperature$T_{M}=100 \mathrm{~K}$ in W / m		$\begin{gathered} \mathrm{q} \text { at average } \\ \text { temperature } \\ \mathrm{T}_{\mathrm{M}}=70 \mathrm{~K} \text { in } \mathrm{W} / \mathrm{m} \end{gathered}$		$\begin{gathered} q \text { at average } \\ \text { temperature } \\ \mathrm{T}_{\mathrm{M}}=50 \mathrm{~K} \text { in } \mathrm{W} / \mathrm{m} \\ \hline \end{gathered}$	
	Insulation Class									
	Standard	$1 \times$ reinf.	Standard	1 x reinf.	Standard	$1 \times$ reinf.	Standard	$1 \times$ reinf.	Standard	1 x reinf.
KRD - 25	140	160	0,2004	0,1760	20,040	17,600	14,028	12,320	10,020	8,800
KRD - 32	160	180	0,2176	0,1919	21,760	19,190	15,232	13,433	10,880	9,595
KRD - 40	160	180	0,2563	0,2180	25,630	21,800	17,941	15,260	12,815	10,900
KRD - 50	200	225	0,2483	0,2148	24,830	21,480	17,381	15,036	12,415	10,740
KRD - 65	225	250	0,2920	0,2476	29,200	24,760	20,440	17,332	14,600	12,380
KRD-80	250	280	0,3279	0,2651	32,790	26,510	22,953	18,557	16,395	13,255
KRD - 100	315	355	0,3307	0,2663	33,070	26,630	23,149	18,641	16,535	13,315

Energy Loss Comparison Double- to Single Pipe, $\mathrm{T}_{\mathrm{M}}=70 \mathrm{~K}$, continuous production

Double Pipe - Standard			2x Single Pipe - Standard Insulation Class				2x Single Pipe - 1x reinf. Insulation Class			
	Heat	oss	$\begin{gathered} \text { PEHD- } \varnothing \\ D_{a} \\ \text { in } \mathrm{mm} \\ \hline \end{gathered}$	Heat Loss		Saving in \%	$\begin{gathered} \hline \text { PEHD- } \varnothing \\ \mathbf{D}_{\mathbf{a}} \\ \text { in } \mathrm{mm} \\ \hline \end{gathered}$	Heat Loss		Saving in \%
Type	$\begin{gathered} \mathbf{u}_{\mathrm{KRD}} \text { in } \\ \mathrm{W} /(\mathrm{m} \bullet \mathrm{~K}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{q}_{\mathrm{KRD}} \\ \text { in W/m } \end{gathered}$		$\begin{gathered} \mathbf{u}_{\mathrm{KRE}} \mathrm{in}^{\mathrm{W}} \\ \mathrm{~W} /(\mathrm{m} \cdot \mathrm{~K}) \end{gathered}$	$\begin{gathered} \mathrm{q}_{\mathrm{KRE}} \\ \text { in W/m } \end{gathered}$			$\begin{gathered} \mathbf{u}_{\mathrm{KRE}} \mathrm{in}^{\mathrm{W} /(\mathrm{m} \bullet \mathrm{~K})} \end{gathered}$	$\begin{gathered} \mathrm{q}_{\mathrm{KRE}} \\ \text { in W/m } \end{gathered}$	
KRD - 25	0,2004	14,028	-	-	-	-	110	0,2396	16,778	16,39
KRD - 32	0,2176	15,232	110	0,2932	20,524	25,78	125	0,2602	18,216	16,38
KRD - 40	0,2563	17,941	110	0,3358	23,500	23,66	125	0,2932	20,522	12,58
KRD - 50	0,2483	17,381	125	0,3738	26,168	33,58	140	0,3272	22,906	24,12
KRD - 65	0,2920	20,440	140	0,4378	30,644	33,30	160	0,3662	25,638	20,27
KRD - 80	0,3279	22,953	160	0,4514	31,604	27,37	180	0,3836	26,856	14,53
KRD - 100	0,3307	23,149	200	0,4658	32,602	29,00	225	0,3952	27,664	16,32

Double Pipe - 1x reinforced			2x Single Pipe - 1x reinf. Insulation Class				2x Single Pipe - 2 x reinf. Insulation Class			
	Hea	oss	PEHD-Ø Da in mm	Heat Loss		Saving in \%	PEHD- \varnothing Da in mm	Heat Loss		Saving in \%
Type	$\mathbf{u}_{\text {KRD }}$ in $\mathrm{W} /(\mathrm{m} \bullet \mathrm{K})$	$\begin{gathered} \mathrm{q}_{\mathrm{KRD}} \\ \text { in W/m } \end{gathered}$		$\mathbf{u}_{\text {KRE }}$ in $\mathrm{W} /(\mathrm{m} \bullet \mathrm{K})$	$\begin{gathered} \mathrm{q}_{\mathrm{KRE}} \\ \text { in W/m } \end{gathered}$			$\mathbf{U}_{\text {KRE }}$ in $\mathrm{W} /(\mathrm{m} \bullet \mathrm{K})$	$\begin{gathered} \mathrm{q}_{\mathrm{KRE}} \\ \text { in W/m } \end{gathered}$	
KRD - 25	0,1760	12,320	110	0,2396	16,778	26,57	125	0,2172	15,202	18,96
KRD - 32	0,1919	13,433	125	0,2602	18,216	26,26	140	0,2368	16,574	18,95
KRD - 40	0,2180	15,260	125	0,2932	20,522	25,64	140	0,2638	18,462	17,34
KRD - 50	0,2148	15,036	140	0,3272	22,906	34,36	160	0,2856	19,988	24,77
KRD - 65	0,2476	17,332	160	0,3662	25,638	32,40	180	0,3204	22,422	22,70
KRD - 80	0,2651	18,557	180	0,3836	26,856	30,90	200	0,3392	23,738	21,83
KRD - 100	0,2663	18,641	225	0,3952	27,664	32,62	250	0,3482	24,368	23,50

The mentioned data are based on a covering height $\left[\mathrm{U}_{\mathrm{H}}\right]$ of $0,80 \mathrm{~m}$ (at KRE-100, 125, 150, 200 of 1,00 $\mathrm{m})$, a thermal conductivity of soil $\left[\lambda_{\mathrm{E}}\right]$ of $1,0 \mathrm{~W} /(\mathrm{m} \bullet \mathrm{K})$, a soil temperature $\left[T_{\mathrm{E}}\right]$ of $10^{\circ} \mathrm{C}$ as well as a pipe distance of 150 mm at single pipe;
$\mathrm{T}_{\mathrm{M}}=\left(\mathrm{T}_{\mathrm{VL}}+\mathrm{T}_{\mathrm{RL}}\right): 2-\mathrm{T}_{\mathrm{E}}$
Example: $\left(100^{\circ}+60^{\circ}\right): 2-10^{\circ}=70 \mathrm{~K}$.
All values are based on a thermal conductivity of polyurethane foam $\lambda_{50}=0,0240 \mathrm{~W} /(\mathrm{m} \bullet \mathrm{K})$.

2 RIGID COMPOUND SYSTEMS

2.3 isoplus - Double Pipe (isopipe ${ }^{\circledR}$-Double)

2.3.7 Elbow 90°

Elbow, horizontal

Dimensions carrier pipe			Carrier pipe elbow		$\begin{aligned} & \text { Jacket-Pipe Outside- } \varnothing \\ & \mathbf{D}_{\mathbf{a}} \\ & \text { in } \mathrm{mm} \end{aligned}$		Length of Angle $L \cdot L_{1}$ in mm	
Nominal Diameter / Dimension		$\begin{aligned} & \text { Outside- } \\ & \varnothing \\ & d_{\mathbf{a}} \\ & \text { in } \mathrm{mm} \end{aligned}$	Wallthickness s in mm	Radius in mm				
		Insu			Class			
DN	Inch				Standard	$1 \times$ reinforced		
20	3/4"		2•26,9	2,6	110,0	125	140	$1000 \cdot 1000$
25	1"	$2 \cdot 33,7$	3,2	110,0	140	160	$1000 \cdot 1000$	
32	11/4"	2•42,4	3,2	110,0	160	180	$1000 \cdot 1000$	
40	$11 /{ }^{\prime \prime}$	2 • 48,3	3,2	110,0	160	180	$1000 \cdot 1000$	
50	2 "	2•60,3	3,2	125,0	200	225	$1000 \cdot 1000$	
65	$21 / 2^{\prime \prime}$	2•76,1	3,2	140,0	225	250	$1000 \cdot 1000$	
80	3 "	2•88,9	3,2	160,0	250	280	$1000 \cdot 1000$	
100	4"	$2 \cdot 114,3$	3,6	270,0	315	355	$1000 \cdot 1000$	
125	5 "	$2 \cdot 139,7$	3,6	330,0	400	450	$1000 \cdot 1000$	
150	6	$2 \cdot 168,3$	4,0	390,0	450	500	$1000 \cdot 1000$	
200	8"	$2 \cdot 219,1$	4,5	510,0	560	630	$1200 \cdot 1200$	

All carrier pipe elbows at least bent according to DIN EN 10220 in one piece or in accordance with DIN EN 10253-2 and welded pipe fittings, depending on dimension. From wall thickness > 3,0 mm with weld seam preparation by 30° bevelled ends acc. to DIN EN ISO 9692-1.
Cylindrical pipe as seamless or welded steel, depending on dimension. Length of bare steel pipe ends: $220 \mathrm{~mm} \pm 10 \mathrm{~mm}$, clear pipe-distance $\left(\mathrm{h}_{\mathrm{s}}\right)$ like pipe bars. Orders for special degree elbows should generally indicate the complementary angle [α]. The mentioned length of angles apply to elbows 45° and special-elbows. Other length of angles on request.
Elbows with an angle length of $1,5 \mathrm{~m}$ are used in applications where preformed part is welded to preformed part and sliding up a coupler is otherwise not possible. It's possible to use as house entry elbow. For improvements and in order to follow the technical development we will reserve modifications of measures as well as technical modifications of the values mentioned in the table.
ATTENTION: When ordering elbows for height differences in levels or for house connections in advance, consider the exact mounting position and specify the location of supply and return.When in doubt, a detailed drawing is to be made.

Material specification jacket pipe see chapter 2.1.4 Material specification carrier pipe see chapter 2.3.1 Material specification PUR-hard foam see chapter 7.1.7
 2 RIGID COMPOUND SYSTEMS

2.3 isoplus - Double Pipe (isopipe ${ }^{\circledR}$-Double)

Elbow, vertical (s)

Dimensions carrier pipe			carrier pipe elbow		Jacket-Pipe Dimension- $\varnothing$$\mathrm{D}_{\mathrm{a}}$$\text { in } \mathrm{mm}$		Length of Angle L. \mathbf{L}_{1} in mm	
Nominal Diameter/ Dimension in		$\begin{aligned} & \text { Outside- } \\ & \quad \varnothing \\ & d_{a} \\ & \text { in } \mathrm{mm} \end{aligned}$	Wallthickness s in mm	$\begin{gathered} \text { Radius } \\ \mathbf{r} \\ \text { in } \mathrm{mm} \end{gathered}$				
		Ins			Class			
DN	Inches				Standard	1x reinforced		
20	3/4"		2•26,9	2,6	110,0	125	140	$1000 \cdot 1000$
25	1"	$2 \cdot 33,7$	3,2	110,0	140	160	$1000 \cdot 1000$	
32	$11 / 4{ }^{\text {" }}$	2•42,4	3,2	110,0	160	180	$1000 \cdot 1000$	
40	$11 / 2^{\prime \prime}$	2•48,3	3,2	110,0	160	180	$1000 \cdot 1000$	
50	2 "	2•60,3	3,2	135,0	200	225	$1000 \cdot 1000$	
65	$21 / 2^{\prime \prime}$	2•76,1	3,2	175,0	225	250	$1000 \cdot 1000$	
80	$3{ }^{\prime \prime}$	2•88,9	3,2	205,0	250	280	$1000 \cdot 1000$	
100	4 "	$2 \cdot 114,3$	3,6	270,0	315	355	$1000 \cdot 1000$	
125	5 "	$2 \cdot 139,7$	3,6	330,0	400	450	$1000 \cdot 1000$	
150	6 "	$2 \cdot 168,3$	4,0	390,0	--	500	$1000 \cdot 1000$	
200	8"	$2 \cdot 219,1$	4,5	510,0	--	630	$1200 \cdot 1200$	

All carrier pipe elbows at least bent according to DIN EN 10220 in one piece or in accordance with DIN EN 10253-2 and welded pipe fittings, depending on dimension. From wall thickness > 3,0 mm with weld seam preparation by 30° bevelled ends acc. to DIN EN ISO 9692-1.
Cylindrical pipe as seamless or welded steel, depending on dimension. Length of bare steel pipe ends $220 \mathrm{~mm} \pm 10 \mathrm{~mm}$, clear pipe-distance $\left(\mathrm{h}_{\mathrm{S}}\right)$ like pipe bars. Orders for special degree elbows should generally indicate the complementary angle [α]. The mentioned length of angles apply to elbows 45° and special-elbows. Other length of angles on request.

Elbows with an angle length of $1,5 \mathrm{~m}$ are used in applications where preformed part is welded to preformed part and sliding up a coupler is otherwise not possible. It's possible to use as house entry elbow. At DN 150 and DN 200 a 1x reinforced elbow with two additionally reducing shrinkable couplers has to be used.

ATTENTION: Elbow for height differences in levels or for house connections see the previous page.

Material specification jacket pipe see chapter 2.1.4 Material specification carrier pipe see chapter 2.3.1 Material specification PUR Hard Foam see chapter 7.1.7

2 RIGID COMPOUND SYSTEMS

2.3 isoplus - Double Pipe (isopipe ${ }^{\circledR}$-Double)

2.3.8 Branch $90^{\circ} /$ Twin-Branch 90°

Branch 90ㅇ, straight

Carrier pipe passage and exit at least acc. to measure standard AGFW-guideline FW 401. From wall thickness > 3,0 mm with weld seam preparation by 30° bevelled ends acc. to DIN EN ISO 9692-1. Length of bare steel pipe ends $220 \mathrm{~mm} \pm 10 \mathrm{~mm}$, clear pipe-distance $\left(\mathrm{h}_{\mathrm{S}}\right)$ like pipe bars.

All branches will be necked-out at the basic pipe or will be produced by use of weld-in T-pieces acc. to DIN EN 10253-2, depending on dimension. The following pipe cylinder will be welded by a round seam, which can be radio graphed. For improvements and in order to follow the technical development we will reserve modifications of measures as well as technical modifications of the values mentioned in the table.

The exit may be used up to the maximum admissible laying length of the corresponding dimension without expanding legs, like L-, Z- or U- elbow. 2 RIGID COMPOUND SYSTEMS

2.3 isoplus - Double Pipe (isopipe ${ }^{\circledR}$-Double)

Branch 90, straight - Standard

	Dimensions passage or main line																							
	DN		20		25		32		40		50		65		80		100		125		150		200	
	Inch		3/4"		1"		$11 / 2^{\prime \prime}$		$11 / 4^{\prime \prime}$		$2^{\prime \prime}$		$21 / 2^{\prime \prime}$		3 "		4"		5 "		6 "		$8{ }^{\prime \prime}$	
	$\mathrm{d}_{\mathrm{a} 1}$		26,9		33,7		42,4		48,3		60,3		76,1		88,9		114,3		139,7		168,3		219,1	
	$\mathrm{D}_{\mathrm{a} 1}$		125		140		160		160		200		225		250		315		400		450		560	
20	L	L1	1200	550	1200	600	1200	600	1200	600	1200	600	1200	650	1200	650	1200	650	1200	700	1200	700	1200	800
	$\mathrm{D}_{\mathrm{a} 2}$	$\mathrm{d}_{\mathrm{a} 2}$	125	26,9	125	26,9	125	26,9	125	26,9	125	26,9	125	26,9	125	26,9	125	26,9	125	26,9	125	26,9	125	26,9
25	L	L_{1}			1200	600	1200	600	1200	600	1200	600	1200	650	1200	650	1200	650	1200	700	1200	700	1200	800
	$\mathrm{D}_{\mathrm{a} 2}$	$\mathrm{d}_{\mathrm{a} 2}$			140	33,7	140	33,7	140	33,7	140	33,7	140	33,7	140	33,7	140	33,7	140	33,7	140	33,7	140	33,7
32	L	L_{1}					1200	600	1200	600	1200	600	1200	650	1200	650	1200	650	1200	700	1200	700	1200	800
	$\mathrm{D}_{\mathrm{a} 2}$	$\mathrm{d}_{\mathrm{a} 2}$					160	42,4	160	42,4	160	42,4	160	42,4	160	42,4	160	42,4	160	42,4	160	42,4	160	42,4
40	L	L_{1}							1200	600	1200	600	1200	650	1200	650	1200	650	1200	700	1200	700	1200	800
	$\mathrm{D}_{\mathrm{a} 2}$	$\mathrm{d}_{\mathrm{a} 2}$							160	48,3	160	48,3	160	48,3	160	48,3	160	48,3	160	48,3	160	48,3	160	48,3
50	L	L_{1}									1200	600	1200	650	1200	650	1200	650	1200	700	1200	700	1200	800
	$\mathrm{D}_{\mathrm{a} 2}$	$\mathrm{d}_{\mathrm{a} 2}$									200	60,3	200	60,3	200	60,3	200	60,3	200	60,3	200	60,3	200	60,3
65	L	L_{1}											1200	650	1200	650	1200	650	1200	700	1200	700	1200	800
	$\mathrm{D}_{\mathrm{a} 2}$	$\mathrm{d}_{\mathrm{a} 2}$											225	76,1	225	76,1	225	76,1	225	76,1	225	76,1	225	76,1
80	L	L_{1}													1200	650	1200	650	1200	700	1200	700	1200	800
	$\mathrm{D}_{\mathrm{a} 2}$	$\mathrm{d}_{\mathrm{a} 2}$													250	88,9	250	88,9	250	88,9	250	88,9	250	88,9
100	L	L_{1}															1300	650	1300	700	1300	700	1300	800
	$\mathrm{D}_{\mathrm{a} 2}$	$\mathrm{d}_{\mathrm{a} 2}$															315	114,3	315	114,3	315	114,3	315	114,3
125	L	L_{1}																	1300	700	1300	700	1300	800
	$\mathrm{D}_{\mathrm{a} 2}$	$\mathrm{d}_{\mathrm{a} 2}$																	400	139,7	400	139,7	400	139,7
150	L	L_{1}																			1400	700	1400	800
	$\mathrm{D}_{\mathrm{a} 2}$	$\mathrm{d}_{\mathrm{a} 2}$																			450	168,3	450	168,3
200	L	L_{1}																					1600	800
	$\mathrm{D}_{\mathrm{a} 2}$	$\mathrm{d}_{\mathrm{a} 2}$																					560	219,1

Branch 90, straight - 1x reinforced

	Dimensions passage or main line																							
	DN		20		25		32		40		50		65		80		100		125		150		200	
	Inch		3/4"		1 "		$11 / 2^{\prime \prime}$		$11 / 4^{\prime \prime}$		$2^{\text {" }}$		$21 / 2^{\prime \prime}$		$3^{\prime \prime}$		4"		5"		6 "		$8{ }^{\prime \prime}$	
	$\mathrm{d}_{\mathrm{a} 1}$		26,9		33,7		42,4		48,3		60,3		76,1		88,9		114,3		139,7		168,3		219,1	
	$\mathrm{D}_{\mathrm{a} 1}$		140		160		180		180		225		250		280		355		450		500		630	
20	L	L1	1200	550	1200	600	1200	600	1200	600	1200	600	1200	650	1200	650	1200	650	1200	700	1200	700	1200	800
	$\mathrm{D}_{\mathrm{a} 2}$	$\mathrm{d}_{\mathrm{a} 2}$	125	26,9	125	26,9	125	26,9	125	26,9	125	26,9	125	26,9	125	26,9	125	26,9	125	26,9	125	26,9	125	26,9
25	L	L_{1}			1200	600	1200	600	1200	600	1200	600	1200	650	1200	650	1200	650	1200	700	1200	700	1200	800
	$\mathrm{D}_{\mathrm{a} 2}$	$\mathrm{d}_{\mathrm{a} 2}$			140	33,7	140	33,7	140	33,7	140	33,7	140	33,7	140	33,7	140	33,7	140	33,7	140	33,7	140	33,7
32	L	L_{1}					1200	600	1200	600	1200	600	1200	650	1200	650	1200	650	1200	700	1200	700	1200	800
	$\mathrm{D}_{\mathrm{a} 2}$	$\mathrm{d}_{\mathrm{a} 2}$					160	42,4	160	42,4	160	42,4	160	42,4	160	42,4	160	42,4	160	42,4	160	42,4	160	42,4
40	L	L_{1}							1200	600	1200	600	1200	650	1200	650	1200	650	1200	700	1200	700	1200	800
	$\mathrm{D}_{\mathrm{a} 2}$	$\mathrm{d}_{\mathrm{a} 2}$							160	48,3	160	48,3	160	48,3	160	48,3	160	48,3	160	48,3	160	48,3	160	48,3
50	L	L_{1}									1200	600	1200	650	1200	650	1200	650	1200	700	1200	700	1200	800
	$\mathrm{Da}_{\mathrm{a} 2}$	$\mathrm{d}_{\mathrm{a} 2}$									200	60,3	200	60,3	200	60,3	200	60,3	200	60,3	200	60,3	200	60,3
65	L	L_{1}											1200	650	1200	650	1200	650	1200	700	1200	700	1200	800
	$\mathrm{Da}_{\mathrm{a} 2}$	$\mathrm{d}_{\mathrm{a} 2}$											225	76,1	225	76,1	225	76,1	225	76,1	225	76,1	225	76,1
80	L	L_{1}													1200	650	1200	650	1200	700	1200	700	1200	800
	$\mathrm{D}_{\mathrm{a} 2}$	$\mathrm{d}_{\mathrm{a} 2}$													250	88,9	250	88,9	250	88,9	250	88,9	250	88,9
100	L	L_{1}															1300	650	1300	700	1300	700	1300	800
	$\mathrm{D}_{\mathrm{a} 2}$	$\mathrm{d}_{\mathrm{a} 2}$															315	114,3	315	114,3	315	114,3	315	114,3
125	L	L_{1}																	1300	700	1300	700	1300	800
	$\mathrm{D}_{\mathrm{a} 2}$	$\mathrm{d}_{\mathrm{a} 2}$																	400	139,7	400	139,7	400	139,7
150	L	L_{1}																			1400	700	1400	800
	$\mathrm{D}_{\mathrm{a} 2}$	$\mathrm{d}_{\mathrm{a} 2}$																			450	168,3	450	168,3
200	L	L_{1}																					1600	800
	$\mathrm{D}_{\mathrm{a} 2}$	$\mathrm{d}_{\mathrm{a} 2}$																					560	219,1

2 RIGID COMPOUND SYSTEMS

2.3 isoplus - Double Pipe (isopipe ${ }^{\circledR}$-Double)

Twin-Branch 90°, straight

Twin branches are used as transition from a double main pipe line to a house connection with single pipes, i. e. isoflex or isopex. Carrier pipe passage and exit at least acc. to measure standard AGFWguideline FW 401. From wall thickness $>3,0 \mathrm{~mm}$ with weld seam preparation by 30° bevelled ends acc. to DIN EN ISO 9692-1. Length of bare steel pipe ends $220 \mathrm{~mm} \pm 10 \mathrm{~mm}$, clear pipe-distance $\left(h_{S}\right)$ like pipe bars.

All branches will be necked-out at the basic pipe or will be produced by use of weld-in T-pieces acc. to DIN EN 10253-2, depending on dimension. The following pipe cylinder will be welded by a round seam, which can be radio graphed. For improvements and in order to follow the technical development we will reserve modifications of measures as well as technical modifications of the values mentioned in the table.

2 RIGID COMPOUND SYSTEMS

2.3 isoplus - Double Pipe (isopipe ${ }^{\circledR}$-Double)

Twin-Branch 90°, straight - Standard

	Dimensions passage or main line																						
	DN	20		25		32		40		50		65		80		100		125		150		200	
	Inch	3/4"		1"		$11 / 2^{\prime \prime}$		$11 / 4^{\prime \prime}$		2 "		$21 / 2^{\prime \prime}$		3"		4 "		$5{ }^{\prime \prime}$		$6{ }^{\text {" }}$		$8{ }^{\prime \prime}$	
	d_{a}	26,9		33,7		42,4		48,3		60,3		76,1		88,9		114,3		139,7		168,3		219,1	
	$\mathrm{D}_{\mathrm{a} 1}$	125		140		160		160		200		225		250		315		400		450		560	
20	L	1300	500	1300	500	1300	500	1300	550	1300	550	1300	550	1300	550	1300	600	1300	650	1300	700	1300	750
	h D $\mathrm{D}_{\mathrm{a} 2}$	47	90	54	160	62	160	68	160	80	200	96	225	114	250	140	315	170	400	208	450	264	560
	$\mathrm{d}_{\mathrm{a} 3}$ $\mathrm{D}_{\mathrm{a} 3}$	26,9		490	90	$\begin{array}{\|c\|c} \hline 26,9 & 90 \\ \hline 240 \end{array}$		26,9	$26,9 \quad 90$ 240	26,9 240		$\begin{array}{c\|c} 26,9 & 90 \\ \hline 240 \\ \hline \end{array}$		$\begin{array}{c\|c} 26,9 & 90 \\ \hline 240 \\ \hline \end{array}$		$\begin{array}{\|c\|c\|} \hline 26,9 & 90 \\ \hline 240 \\ \hline 2 \end{array}$		26,9 240 20		$\begin{array}{c\|c} 26,9 & 90 \\ \hline 240 \\ \hline \end{array}$		26,9	90
	A	240		490		240		240		240		240		240		240		240		240		240	
	L			1300	500	1300	500	1300	550	1300	550	1300	550	1300	550	1300	600	1300	650	1300	700	1300	750
25	h $\mathrm{D}_{\mathrm{a} 2}$			54	160	62	160	68	160	80	200	96	225	114	250	140	315	170	400	208	450	264	560
	$\mathrm{d}_{\mathrm{a} 3}$ $\mathrm{D}_{\mathrm{a} 3}$			33,7	90	33,7 90		33,7	90	$\begin{array}{\|c\|c} 33,7 & 90 \\ \hline 240 \end{array}$		33,7 10 240		33,7 90 240		33,7 240		33,7 90 240		33,7 90		33,7	90
	A			490		240		240		240		240		240		240		240		240		240	
32	L					1300	500	1300	550	1300	550	1300	550	1300	550	1300	600	1300	650	1300	700	1300	750
	h $\mathrm{D}_{\mathrm{a} 2}$					62	180	68	180	80	200	96	225	114	250	140	315	170	400	208	450	264	560
	$\mathrm{d}_{\mathrm{a} 3}$ $\mathrm{D}_{\mathrm{a} 3}$					42,4	110	42,4	110	240	110	240	110	$\begin{array}{c\|c} 42,4 & 110 \\ \hline 240 \\ \hline \end{array}$		42,4 110 240	110	42,4	110	42,4	110	42,4	110
	A					240		240		240		240		240		240		240		240		240	
40	L							1300	550	1300	550	1300	550	1300	550	1300	600	1300	650	1300	700	1300	750
	h $\mathrm{D}_{\mathrm{a} 2}$							68	180	80	200	96	225	114	250	140	315	170	400	208	450	264	560
	$d_{a 3}$ $D_{a 3}$							48,3	110	48,3	110	48,3	110	48,3	110	48,3	110	48,3	110	48,3	110	48,3	110
	A							240		240		240		240		240		240		240		240	
50	L									1300	550	1300	550	1300	600	1300	600	1300	650	1300	700	1300	750
	h $\mathrm{D}_{\mathrm{a} 2}$									80	225	96	225	114	250	140	315	170	400	208	450	264	560
	$d_{a 3}$ $D_{a 3}$									60,3	125	60,3	125	60,3	125	60,3	125	60,3	125	60,3	125	60,3	125
	A									240		240		240		240		240		240		240	
65	L											1300	600	1400	600	1400	600	1400	650	1400	700	1400	750
	h D $\mathrm{Da} 2^{\mathrm{c}} \mathrm{l}$											96	250	114	280	140	315	170	400	208	450	264	560
	$d_{a 3}$ $D_{a 3}$											76,1	140	76,1	140	76,1	140	76,1	140	76,1	140	76,1	140
	A											240		300		300		300		300		300	
80	L													1400	600	1400	600	1400	650	1400	700	1400	750
	h $\mathrm{D}_{\mathrm{a} 2}$ $\mathrm{~d}^{2}$ $\mathrm{~L}^{\prime}$													114	280	140	315	170	400	208	450	264	560
	$\mathrm{d}_{\mathrm{a} 3}$ $\mathrm{D}_{\mathrm{a} 3}$													118 88,9	160	88,9	160	88,9	160	88,9	160	88,9	160
	A													300		300		300		300		300	
100	L															1500	650	1500	650	1500	700	1500	750
	h Da_{2}															140	355	170	400	208	450	264	560
	$d_{a 3}$ $D_{a 3}$															114,3	200	114,3	200	114,3	200	114,3	200
	A															350		300		350		350	
125	L																	1500	650	1500	700	1500	750
	h $\mathrm{D}_{\mathrm{a} 2}$ $\mathrm{~d}^{2}$ $\mathrm{~L}^{2}$																	170	400	208	450	264	560
	$\mathrm{d}_{\mathrm{a} 3}$ $\mathrm{D}_{\mathrm{a} 3}$																	139,7	225	139,7	225	139,7	225
	A																	300		350		350	
150	L																			1600	700	1600	750
	h $\mathrm{D}_{\mathrm{a} 2}$																			208	500	264	560
	$d_{a 3}$ $D_{a 3}$																			168,3	250	168,3	250
	A																			35		45	
200	L																					1700	750
	h $\mathrm{D}_{\mathrm{a} 2}$																					264	560
	$d_{a 3}$ $D_{a 3}$																					219,1	315
	A																					450	

2 RIGID COMPOUND SYSTEMS

2.3 isoplus - Double Pipe (isopipe ${ }^{\circledR}$-Double)

Twin-Branch 90°, straight - 1x reinforced

	Dimensions passage or main line																							
	DN		20		25		32		40		50		65		80		100		125		150		200	
	Inch		3/4"		1"		$11 / 2^{\prime \prime}$		$11 / 4^{\prime \prime}$		2"		$21 / 2^{\prime \prime}$		3 "		$4^{\text {II }}$		5"		6 "		8"	
	d_{a}		26,9		33,7		42,4		48,3		60,3		76,1		88,9		114,3		139,7		168,3		219,1	
	$\mathrm{D}_{\mathrm{a} 1}$		140		160		180		180		225		250		280		355		450		500		630	
20	L	L_{1}	1300	500	1300	500	1300	500	1300	550	1300	550	1300	550	1300	550	1300	600	1300	650	1300	700	1300	750
	h	$\mathrm{D}_{\mathrm{a} 2}$	47	140	54	160	62	180	68	180	80	225	96	250	114	280	139	355	170	450	208	500	264	630
	$\mathrm{d}_{\text {a3 }}$	$\mathrm{D}_{\mathrm{a} 3}$	26,9	90	$\frac{26,9}{} 240$		26,9 90 240		$\frac{26,9}{240}$		$\begin{array}{\|c\|c\|} \hline 26,9 & 90 \\ \hline 240 \\ \hline \end{array}$		$\begin{array}{\|c\|c\|} \hline 26,9 & 90 \\ \hline 240 \end{array}$		26,9 90		29,6 90		26,9 90		26,9 90		26,9 90	
	A		240		240		240		240		240		240		240		240		240		240		240	
25	L	L_{1}			1300	500	1300	500	1300	550	1300	550	1300	550	1300	550	1300	600	1300	650	1300	700	1300	750
	h	$\mathrm{D}_{\mathrm{a} 2}$			54	160	62	180	68	180	80	225	96	250	114	280	139	355	170	450	208	500	264	630
	$\mathrm{d}_{\mathrm{a} 3}$	$\mathrm{D}_{\mathrm{a} 3}$			33,7	90	33,7	90	33,7 90 240		33,7 90 240		33,7 90 240		33,7 70		240	90	33,7 90		33,7 90		33,7 90	
	A				240		240		240		240		240		240		240		240		240		240	
32	L	L_{1}					1300	550	1300	550	1300	550	1300	550	1300	550	1300	600	1300	650	1300	700	1300	750
	h	$\mathrm{D}_{\mathrm{a} 2}$					62	180	68	180	80	225	96	250	114	280	139	355	170	450	208	500	264	630
	da_{a}	$\mathrm{D}_{\mathrm{a} 3}$					42,4	110	42,4	110	42,4	110	42,4	110	42,4	110	42,4	110	42,4	110	42,4	110	42,4	110
	A						240		240		240		240		240		240		240		240		240	
40	L	L_{1}							1300	550	1300	550	1300	550	1300	550	1300	600	1300	650	1300	700	1300	750
	h	$\mathrm{D}_{\mathrm{a} 2}$							68	180	80	225	96	250	114	280	139	355	170	450	208	500	264	630
	$\mathrm{d}_{\mathrm{a} 3}$	$\mathrm{D}_{\mathrm{a} 3}$							48,3	110	48,3	110	48,3	110	48,3	110	48,3	110	48,3	110	48,3	110	48,3	110
	A								240		240		240		240		240		240		240		240	
50	L	L_{1}									1300	550	1300	550	1300	600	1300	600	1300	650	1300	700	1300	750
	h	$\mathrm{D}_{\mathrm{a} 2}$									80	225	96	250	114	280	139	355	170	450	208	500	264	630
	$\mathrm{d}_{\mathrm{a} 3}$	$\mathrm{D}_{\mathrm{a} 3}$									60,3	125	60,3	125	60,3	125	60,3	125	60,3	125	60,3	125	60,3	125
	A										240		240		240		240		240		240		240	
65	L	L_{1}											1300	600	1400	600	1400	600	1400	650	1400	700	1400	750
	h	$\mathrm{D}_{\mathrm{a} 2}$											96	250	114	280	139	355	170	450	208	500	264	630
	$\mathrm{da}_{\text {a }}$	$\mathrm{D}_{\mathrm{a} 3}$											76,1	140	76,1	140	76,1	140	76,1	140	76,1	140	76,1	140
	A												240		300		300		300		300		300	
80	L	L_{1}													1400	600	1400	600	1400	650	1400	700	1400	750
	h	$\mathrm{D}_{\mathrm{a} 2}$													114	280	139	355	170	450	208	500	264	630
	$\mathrm{d}_{\mathrm{a} 3}$	$\mathrm{D}_{\mathrm{a} 3}$													88,9	160	88,9	160	88,9	160	88,9	160	88,9	160
	A														300		300		300		300		300	
100	L	L_{1}															1500	650	1500	650	1500	700	1500	750
	h	$\mathrm{D}_{\mathrm{a} 2}$															139	355	170	450	208	500	264	630
	$\mathrm{d}_{\mathrm{a} 3}$	$\mathrm{D}_{\mathrm{a} 3}$															114,3	200	114,3	200	114,3	200	114,3	200
	A																350		350		350		350	
125	L	L_{1}																	1500	650	1500	700	1500	750
	h	$\mathrm{D}_{\mathrm{a} 2}$																	170	450	208	500	264	630
	$\mathrm{d}_{\mathrm{a} 3}$	$\mathrm{D}_{\mathrm{a} 3}$																	139,7	225	139,7	225	139,7	225
	A																		350		350		350	
150	L	L_{1}																			1600	700	1600	750
	h	$\mathrm{D}_{\mathrm{a} 2}$																			208	500	264	630
	$\mathrm{d}_{\mathrm{a} 3}$	$\mathrm{D}_{\mathrm{a} 3}$																			168,3	250	168,3 250	
	A																				350		450	
200	L	L_{1}																					1700	750
	h	$\mathrm{D}_{\mathrm{a} 2}$																					264	630
	$\mathrm{d}_{\mathrm{a} 3}$	$\mathrm{D}_{\mathrm{a} 3}$																					219,1	315
	A																						450	

2.3 isoplus - Double Pipe (isopipe ${ }^{\circledR}$-Double)

2.3.9 Drain / Vent

Dimensions Double Pipe				Length L in mm	Dimensions Drain /Vent			
Nominal Diameter/ Dimension DN	$\begin{gathered} \hline \text { Steel-Pipe- } \\ \text { Outside } \\ \varnothing \\ d_{\mathrm{a} 1} \\ \text { in } \mathrm{mm} \end{gathered}$	```Carrier Pipe- outside-\varnothing Da1 in mm```			Axesdistance A	ELE Outside- \varnothing $d_{\mathrm{a} 2}$	ELE Outside- \varnothing $\mathbf{D}_{\mathrm{a} 2}$	Overallheight h
		Standard	1x reinforced		in mm	in mm	in mm	in mm
20	2 - 26,9	125	140	1200	150	26,9	90	500
25	2•33,7	140	160	1200	150	33,7	90	500
32	$2 \cdot 42,4$	160	180	1200	150	33,7	90	500
40	2 - 48,3	160	180	1200	150	33,7	90	500
50	$2 \cdot 60,3$	200	225	1200	150	33,7	90	500
65	2•76,1	225	250	1200	150	33,7	90	500
80	$2 \cdot 88,9$	250	280	1200	150	33,7	90	500
100	$2 \cdot 114,3$	315	355	1200	150	33,7	90	500
125	$2 \cdot 139,7$	400	450	1200	150	33,7	90	500
150	2-168,3	450	500	1200	150	33,7	90	500
200	$2 \cdot 219,1$	560	630	1200	150	33,7	90	500

Carrier pipe passage and venting at least acc. to measure standard AGFW-guideline FW 401. From wall thickness > $3,0 \mathrm{~mm}$ with weld seam preparation by 30° bevelled ends acc. to DIN EN ISO 9692-1. Length of bare steel pipe ends $220 \mathrm{~mm} \pm 10 \mathrm{~mm}$, clear pipe distance $\left(\mathrm{h}_{\mathrm{S}}\right)$ double pipe like pipe bars. All venting branches may not be shortened as they include a foamed in isoplus-ball valve with outside located support-handle. For improvements and in order to follow the actual technical development we will reserve modifications of measures as well as technical modifications of the values mentioned in the table.

The not insulated branch-end is manufactured generally with galvanised pipe end with outside thread-connection and an end cap. For manufacturing-technical reasons venting branches will be generally insulated with standard insulation. At areas of L-, Z- or U-elbows the assembling will be not permitted, due to bending tension which will occur. In order to guarantee the operation and access to the venting, the installation should be installed in a manhole acc. to DIN 4034. The manhole has to fulfil the corresponding construction static requirements.

Material specification jacket pipe see chapter 2.1.4
Material specification carrier pipe see chapter 2.3.1
Material specification PUR-hard foam see chapter 7.1.7

2 RIGID COMPOUND SYSTEMS

2.3 isoplus - Douple Pipe (isopipe ${ }^{\circledR}$-Double)

2.3.10 Reducing Piece

Dimensions Nominal Diameter 1				Dimensions Nominal Diameter 2				Overalllength L in mm
Carrier pipe		Jacket-Pipe-Outside- \varnothing $\mathrm{D}_{\mathrm{a} 1}$ in mm		Carrier pipe		$\begin{aligned} & \text { Jacket-Pipe-Outside- } \varnothing \\ & \mathbf{D}_{\mathbf{a} 2} \\ & \text { in } \mathrm{mm} \end{aligned}$		
Nominal Diameter/	Outside- \varnothing			Nominal Diameter / Dimension	$\begin{gathered} \hline \text { Outside- } \\ \varnothing \\ d_{\mathrm{a} 2} \\ \text { in } \mathrm{mm} \end{gathered}$			
	$\mathrm{d}_{\mathrm{a} 1}$	Insulation Class				Insulation Class		
DN	in mm	Standard	1x reinforced			Standard	1x reinforced	
25	$2 \cdot 33,7$	140	160	20	2•26,9	125	140	1500
32	$2 \cdot 42,4$	160	180	25	$2 \cdot 33,7$	140	160	1500
				20	2•26,9	125	140	1500
40	$2 \cdot 48,3$	160	180	32	$2 \cdot 42,4$	160	180	1500
	$2 \cdot 48,3$	160	180	25	$2 \cdot 33,7$	140	160	1500
50	$2 \cdot 60,3$	200	225	$\begin{aligned} & 40 \\ & 32 \end{aligned}$	$\begin{aligned} & 2 \cdot 48,3 \\ & 2 \cdot 42.4 \end{aligned}$	160	180	1500
65					2•60,3	200	225	1500
	$2 \cdot 76,1$	225	250	40	2 • 48,3	160	180	1500
80	$2 \cdot 88,9$	250	280	65	$2 \cdot 76,1$	225	250	1500
				50	$2 \cdot 60,3$	200	225	1500
100	$2 \cdot 1143$		355	80	2 •88,9	250	280	1500
	2-114,3	315	355	65	$2 \cdot 76,1$	225	250	1500
125				100	$2 \cdot 114,3$	315	355	1500
	$2 \cdot 139,7$	400	450	80	2•88,9	250	280	1500
150		450	500	125	$2 \cdot 139,7$	400	450	1500
	$2 \cdot 168,3$	450	500	100	$2 \cdot 114,3$	315	355	1500
200	$2 \cdot 219,1$			150	$2 \cdot 168,3$	450	500	1500
	$2 \cdot 219,1$	560	630	125	$2 \cdot 139,7$	400	450	1500

Carrier pipe at least acc. to measure standard AGFW-guideline FW 401. From wall thickness > 3,0 mm with weld seam preparation by 30° bevelled ends acc. to DIN EN ISO 9692-1. Length of bare steel pipe ends $220 \mathrm{~mm} \pm 10 \mathrm{~mm}$, clear pipe distance $\left(\mathrm{h}_{\mathrm{S}}\right)$ like pipe bars.
As carrier pipe reducer generally an eccentric piece of steel acc. to DIN EN 10253-2 with welded pipe socket will be used. For improvements and in order to follow the actual technical development we will reserve modifications of measures and as well technical modifications of the values mentioned in the table.

In order to avoid unacceptable high frontal soil-pressure loads, the reducing piece has to be padded in. Expansion pads are not part of the delivery range of the reducing piece.

Material specification jacket pipe see chapter 2.1.4
Material specification carrier pipe see chapter 2.3.1
Material specification PUR-hard foam see chapter 7.1.7

2 RIGID COMPOUND SYSTEMS

2.3 isoplus - Double Pipe (isopipe ${ }^{\circledR}$-Double)

2.3.11 Bifurcated Pipe

Bifurcated Pipe - Type I

Dimensions Steel Pipe		Dimensions Double Pipe				Dimension Single Pipe $D_{\text {a3 }}$ in mm	Axesdistance A in mm	Length L in mm	Length L_{1} in mm
Nominal Diameter / Dimension DN	$\begin{array}{\|c\|} \hline \text { Outside- } \\ \varnothing \\ d_{a} \\ \text { in } m m \end{array}$	Jacket-Pipe-Outside- \varnothing $\mathrm{D}_{\mathrm{a} 1 / 2}$ in mm							
		Insulation	Standa	sulatio	1 x rei				
		$\mathrm{D}_{\mathrm{a} 1}$	$\mathrm{D}_{\mathrm{a} 2}$	$\mathrm{D}_{\mathrm{a} 1}$	$\mathrm{Da}_{\mathrm{a} 2}$				
20	$2 \cdot 26,9$	125	140	140	140	90	240	1200	600
25	$2 \cdot 33,7$	140	160	160	160	90	240	1200	600
32	$2 \cdot 42,4$	160	180	180	180	110	260	1200	600
40	$2 \cdot 48,3$	160	180	180	180	110	260	1200	600
50	$2 \cdot 60,3$	200	225	225	225	125	290	1200	600
65	2 - 76,1	225	250	250	250	140	310	1200	600
80	$2 \cdot 88,9$	250	280	280	280	160	350	1200	600
100	$2 \cdot 114,3$	315	355	355	355	200	375	1200	600
125	$2 \cdot 139,7$	400	400	450	450	225	450	1200	600
150	2•168,3	450	500	500	500	250	510	1300	650
200	$2 \cdot 219,1$	560	630	630	630	315	610	1400	700

Bifurcated pipes are used for transitions from two single pipes to the isoplus-double pipe. Carrier pipe at least acc. to measure standard AGFW-guideline FW 401. From wall thickness $>3,0 \mathrm{~mm}$ with weld seam preparation by 30° bevelled ends acc. to DIN EN ISO 9692-1. Length of bare steel pipe ends $220 \mathrm{~mm} \pm 10 \mathrm{~mm}$, clear pipe distance $\left(\mathrm{h}_{\mathrm{S}}\right)$ like pipe bars. For improvements and in order to follow the actual technical development we will reserve modifications of measures as well as technical modifications of the values mentioned in the table.
ATTENTION: Orders for bifurcated pipes should clearly indicate all carrier and jacket-pipe diameters. During assembling the correct position of single- and double pipes resp. the installation position of the bifurcated pipe as well as the manufacturing-technical determined axis-measure \mathbf{A} has to be considered. There must be the possibility of expansion compensation at the transition before the bifurcated pipe (Z- or U-elbow), because bifurcated pipes should be assembled generally at pipestatic neutral line-positions. This will be also valid in case of a system-change in an exit of a single pipe-branch. Due to manufacturing-technical reasons the single pipes will be generally insulated in standard insulation.

Material specification jacket pipe see chapter 2.1.4
Material specification carrier pipe see chapter 2.3.1
Material specification PUR-hard foam see chapter 7.1.7

2 RIGID COMPOUND SYSTEMS
 ``` 2.3 isoplus - Double Pipe (isopipe

\mp@subsup{}{}{\circledR}\mathrm{ -Double)```
}

Bifurcated Pipe - Type II

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Dimensions Steel Pipe} & \multicolumn{4}{|c|}{Dimensions Double Pipe} & \multirow[t]{4}{*}{Dimension
Single
Pipe
\(\mathbf{D}_{\text {a3 }}\)
in mm} & \multirow{4}{*}{\begin{tabular}{l}
Axesdistance \\
A in mm
\end{tabular}} & \multirow{4}{*}{\begin{tabular}{l}
Height offset \\
h in mm
\end{tabular}} & \multirow{4}{*}{\begin{tabular}{l}
Length \\
L in mm
\end{tabular}} & \multirow{4}{*}{Length
\[
\begin{gathered}
\mathbf{L}_{1} \\
\text { in } \mathrm{mm}
\end{gathered}
\]} & \multirow{4}{*}{\[
\begin{gathered}
\text { Length } \\
\\
\mathbf{L}_{2} \\
\text { in } \mathrm{mm}
\end{gathered}
\]} \\
\hline \multirow[t]{2}{*}{Nominal Diameter / Dimension} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Outside- } \\
& \varnothing \\
& d_{a} \\
& \text { in } \mathrm{mm}
\end{aligned}
\]} & \multicolumn{4}{|c|}{Jacket-Pipe-Outside- \(\varnothing\) \(\mathrm{D}_{\mathrm{a} 1 / 2}\) in mm} & & & & & & \\
\hline & & Insulatio & Stand & sulatio & 1x re & & & & & & \\
\hline DN & & \(\mathrm{D}_{\mathrm{a} 1}\) & \(\mathrm{D}_{\mathrm{a} 2}\) & \(\mathrm{D}_{\mathrm{a} 1}\) & \(\mathrm{Da}_{\mathrm{a} 2}\) & & & & & & \\
\hline 20 & 2 •26,9 & 125 & 140 & 140 & 140 & 90 & 240 & 47 & 1100 & 600 & 760 \\
\hline 25 & \(2 \cdot 33,7\) & 140 & 160 & 160 & 160 & 90 & 240 & 54 & 1100 & 600 & 760 \\
\hline 32 & 2•42,4 & 160 & 180 & 180 & 180 & 110 & 260 & 62 & 1100 & 600 & 740 \\
\hline 40 & 2 • 48,3 & 160 & 180 & 180 & 180 & 110 & 260 & 68 & 1100 & 600 & 740 \\
\hline 50 & \(2 \cdot 60,3\) & 200 & 225 & 225 & 225 & 125 & 300 & 80 & 1100 & 600 & 700 \\
\hline 65 & 2•76,1 & 225 & 250 & 250 & 250 & 140 & 310 & 96 & 1100 & 600 & 690 \\
\hline 80 & 2 • 88,9 & 250 & 280 & 280 & 280 & 160 & 360 & 114 & 1200 & 600 & 640 \\
\hline 100 & \(2 \cdot 114,3\) & 315 & 355 & 355 & 350 & 200 & 400 & 139 & 1300 & 650 & 750 \\
\hline 125 & \(2 \cdot 139,7\) & 400 & 400 & 450 & 450 & 225 & 425 & 170 & 1300 & 700 & 725 \\
\hline 150 & \(2 \cdot 168,3\) & 450 & 500 & 500 & 500 & 250 & 450 & 208 & 1400 & 700 & 775 \\
\hline 200 & \(2 \cdot 219,1\) & 560 & 630 & 630 & 630 & 315 & 615 & 264 & 1700 & 750 & 885 \\
\hline
\end{tabular}

Bifurcated pipes are used for transitions from two single pipes to the isoplus double pipe. Carrier pipe at least acc. to measure standard AGFW-guidelines FW 401. From wall thickness \(>3,0 \mathrm{~mm}\) with weld seam preparation by \(30^{\circ}\) bevelled ends acc. to DIN EN ISO 9692-1. Length of bare steel pipe ends \(220 \mathrm{~mm} \pm 10 \mathrm{~mm}\), clear pipe distance \(\left(\mathrm{h}_{\mathrm{S}}\right)\) like pipe bars. For improvements and in order to follow the actual technical development we will reserve modifications of measures as well as technical modifications of the values mentioned in the table.
ATTENTION: Orders for bifurcated pipes should clearly indicate all carrier and jacket pipe diameters. During assembling the correct position of single- and double pipes resp. the installation position of the bifurcated pipe as well as the manufacturing-technical determined axis-measure \(\mathbf{A}\) has to be considered. There must be the possibility of expansion compensation at the transition before the bifurcated pipe (Z- or U-elbow), because bifurcated pipes should be assembled generally at pipestatic neutral line-positions. This will be also valid in case of a system-change in an exit of a single pipe-branch. Due to manufacturing-technical reasons the single pipes will be generally insulated in standard insulation.

Material specification jacket pipe see chapter 2.1.4
Material specification carrier pipe see chapter 2.3.1
Material specification PUR-hard foam see chapter 7.1.7
3.1 General
3.1.1 Principle / Heat-Insulation / Jacket-Pipe 3/1
3.2 isoflex
3.2.1 Carrier Pipe / Connection Technology / Operating Conditions \(3 / 2\)
3.2.2 Dimensions resp. Types / Heat Loss and Capacity (Dimension) \(3 / 2\)
3.3 isocu
3.3.1 Carrier Pipe / Connection Technology / Operating Conditions \(3 / 3\)
3.3.2 Dimensions resp. Types / Heat Loss and Capacity (Dimension) \(3 / 3\)
3.4 isopex
3.4.1 Carrier Pipe / Connection Technology / Operating Conditions \(3 / 4\)
3.4.2 Dimensions resp. Types 3/5
3.4.3 Heat Loss and Capacity (Dimensions) 3/6-7
3.5 isoclima
3.5.1 Carrier Pipe / Connection Technology / Operating Conditions \(3 / 8\)
3.5.2 Dimensions resp. Types / Energy Loss and Capacity (Dimension) 3/8
3.6 Flexible pipe preformed parts
3.6.1 General \(3 / 9\)
3.6.2 House Entry Elbow \(90^{\circ}\) \(3 / 9\)
3.6.3 Bifurcated Pipe. 3/10
3.6.4 GFK-Assembling Fittings. 3/11-12
3.6.5 Components Carrier Pipe isopex 3 / 13-23

\section*{3 FLEXIBLE COMPOUND SYSTEMS}

\subsection*{3.1 General}

\subsection*{3.1.1 Principle / Heat-Insulation / Jacket-Pipe}

\section*{Principle}

The Flexible Compound System of isoplus is especially suited for house connections and extension works on. It can be easily being led around obstructions such as buildings, trees or other pipeline systems. It can be also used for complete low-temperature systems in lower dimensions.

Because of the continuous production of isoplus flexible pipes a longitudinal water tight compound system will be reached. That means the three basic materials (carrier pipe + insulation + jacket pipe) are connected by axial force with each other. Due to very small bending radius of flexible pipes, it is possible to choose always the direct way around obstructions respectively to the area of the house connection.

Due to the big delivery lengths the pipe laying works can be carried out in a short time, the operational works can be reduced to a minimum. Also the underground construction works can be reduced essentially because of the extremly narrow trenches. For these reasons the flexible pipe system of isoplus represents a technically fully developed and economically as well as ecologically perfect laying method for district heating systems.

\section*{Heat-Insulation}

Flexible pipes will be insulated with polyurethane-hard-foam (PUR), consisting of component A = Polyol (clear) and component B = Isocyanat (dark), tested acc. to EN 15632-1. During production continuously foamed around the carrier pipe, a high quality heat insulation with an execellent thermal conductivity, \(\lambda_{50}=\) maximum \(0,023 \mathrm{~W} /(\mathrm{m} \bullet \mathrm{K})\), at low specific weight will be reached, due to an exothermal chemical reaction.
isoplus is using generally Cyclopentan driven foam, 100 \% free of Freon and therefore enviroment friendly. That means the very best heat insulation values will be reached at lowest possible ODP- and GWP-values, ODP (Ozone Reducing Potential) = 0, GWP (Green House Potential) \(=<0,001\) !
In order to avoid the exchange of PUR-cell-gas, in all isoplus flexible pipes a diffusion barrier is included. This barrier-foil will be implemented between PUR-foam and jacket-pipe during the production procedure. The used barrier-foils are granting the flexible pipes a constant and durable low engery loss during the duration of operation.

For isoflex and isocu a 100 \% diffusion tight aluminium-foil will be used as barrier. In order to keep the compound system, the foil is coated on both sides by corona treated polyethylene. isopex- and isoclima-pipes are containing a coloured and also corona (electrical surface-cross-linked) treated polyethylene foil, as a direct cell gas barrier.

\section*{Jacket-Pipe}

The jacket-pipe of the flexible pipes consists of proved polyethylene with even surface. Polyethylene Low Density is a seamless, tough elastic thermo-plastic material which will be continuously extruded on to the PUR foam during the production procedure. Thermal conductivity \(\lambda_{\text {PE }}=0,35 \mathrm{~W} /(\mathrm{m} \bullet \mathrm{K})\).

PE is mentioned in all national and international standards, respectively recommendations, as the only suitable material, due to the resistance against weather conditions and UV-rays, as well as against practically all chemical compounds existing in the soil.

\subsection*{3.2.1 Carrier Pipe / Connection Technology / Operating Conditions}

\section*{Carrier Pipe}

The isoflex-carrier pipe consists of a welded, measure rolled precision steel pipe with especial measure-exactness and plain inner surface. Measures and weights acc. to DIN EN 10220, material P195GH+N (annealed regular) No. 1.0348. Technical delivery conditions acc. to option 1 of DIN EN 10305-3, with works certificate (APZ) acc. to EN 10204-3.1.

\section*{Connection Technology}

The connection of the steel pipe will be made by autogenously-
 welding or by Wolfram Inert Gas (WIG) welding procedure.

\section*{Operating Conditions}

Permissible short-term peak temperature \(T_{\max }\) :
Maximum operating pressure \(p_{B}\) :
Maximum permissible axial-tension \(\sigma_{\text {max }}\) :
Leak detecting:
\(130^{\circ} \mathrm{C}\)
25 bar
\(150 \mathrm{~N} / \mathrm{mm}^{2}\)
Copper wire isolated and twisted as standard

Possible liquids: Heating water as well as other material resistant liquids
\begin{tabular}{|l|c|c|l|c|c|}
\hline \multicolumn{7}{|c|}{ Technical Data P195GH at \(\mathbf{2 0}{ }^{\circ} \mathrm{C}\)} \\
\hline Property & Unit & Value & Property & Unit & Value \\
\hline Volume weight \(p\) & \(\mathrm{~kg} / \mathrm{dm}^{3}\) & 7,85 & Elastic modulus \(E\) & \(\mathrm{~N} / \mathrm{mm}^{2}\) & 211.800 \\
Tensile stress \(R_{m}\) & \(\mathrm{~N} / \mathrm{mm}^{2}\) & \(320-440\) & Thermal conductivity \(\lambda\) & \(\mathrm{W} /(\mathrm{m} \bullet \mathrm{K})\) & 55,2 \\
Yield stress \(R_{e}\) & \(\mathrm{~N} / \mathrm{mm}^{2}\) & 195 & Specific heat capacity \(c\) & \(\mathrm{~kJ} /(\mathrm{kg} \bullet \mathrm{K})\) & 0,43 \\
Wall roughness \(k\) & mm & 0,01 & Thermal expansion coefficient \(\alpha\) & \(\mathrm{K}^{-1}\) & \(11,3 \bullet 10^{-6}\) \\
\hline
\end{tabular}

\subsection*{3.2.2 Dimensions resp. Types / Heat Loss and Capacity}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Dimensions Steel Pipe P195GH + N} & \multirow[b]{2}{*}{Jacket-Pipe Outside- \(\varnothing\) \(\mathrm{D}_{\mathrm{a}}\) in mm} & \multirow[t]{2}{*}{Delivery length in 1,00 m steps L in \(m\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Maximum } \\
& \text { coil- } \\
& \text { outside-Ø } \\
& d_{\mathbf{R}} \\
& \text { in } \mathrm{mm}
\end{aligned}
\]} & \multirow[t]{2}{*}{Minimum bending radius r in m} & \multirow[t]{2}{*}{Weight without water G in \(\mathrm{kg} / \mathrm{m}\)} \\
\hline Type & \[
\begin{aligned}
& \text { Outside- } \\
& \varnothing \\
& d_{a} \\
& \text { in } m m
\end{aligned}
\] & Wallthickness s in mm & & & & & \\
\hline isoflex - 20 & 20,0 & 2,0 & 75 & 24-100 & 2220 & 0,8 & 1,57 \\
\hline isoflex-28 & 28,0 & 2,0 & 75 & 24-100 & 2220 & 0,8 & 1,94 \\
\hline isoflex-28 v & 28,0 & 2,0 & 90 & 24-100 & 2300 & 0,9 & 2,15 \\
\hline isoflex-28+28 & 28,0 & 2,0 & 110 & 24-100 & 2440 & 1,10 & 3,43 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Type} & \multicolumn{6}{|c|}{Dimensioning} & \multicolumn{4}{|c|}{Heat Loss} \\
\hline & \multirow[t]{2}{*}{Watercontent in \(1 / \mathrm{m}\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Volume- } \\
& \text { flow } \\
& \mathbf{V} \\
& \text { in } \mathrm{m}^{3} / \mathrm{h}
\end{aligned}
\]} & \multirow[t]{2}{*}{Flowspeed w in \(\mathrm{m} / \mathrm{s}\)} & \multicolumn{3}{|l|}{Transmittable capacity P in kW at spread} & \multirow[t]{2}{*}{} & \multicolumn{3}{|l|}{q per pipe meter in W/m at average temperature \(\mathbf{T}_{\mathrm{M}}\)} \\
\hline & & & & 20 K & 30 K & 40 K & & 70 K & 60 K & 50 K \\
\hline isoflex - 20 & 0,201 & 0,36-0,72 & 0,5-1,0 & 8-17 & 13-25 & 17-34 & 0,1054 & 7,377 & 6,324 & 5,270 \\
\hline isoflex-28 & 0,452 & 0,81-1,63 & 0,5-1,0 & 19-38 & 28-57 & 38-76 & 0,1397 & 9,777 & 8,380 & 6,983 \\
\hline isoflex-28 v & 0,452 & 0,81-1,63 & 0,5-1,0 & 19-38 & 28-57 & 38-76 & 0,1183 & 8,278 & 7,095 & 5,913 \\
\hline isoflex-28+28 & 0,452 & 0,81-1,63 & 0,5-1,0 & 19-38 & 28-57 & 38-76 & 0,1952 & 13,660 & 11,710 & 9,760 \\
\hline
\end{tabular}

The mentioned data are based on a medium specific heat capacity [\(\mathrm{c}_{\mathrm{m}}\)] of the water of \(4.187 \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{K})\), a soil covering height \(\left[\mathrm{U}_{\mathrm{H}}\right]\) of \(0,60 \mathrm{~m}\) (Surface jacket pipe to surface of the area), a heat conductivity of soil \(\left[\lambda_{\mathrm{E}}\right]\) of \(1,2 \mathrm{~W} /(\mathrm{m} \bullet \mathrm{K})\), a medium temperature of soil \(\left[T_{E}\right]\) of \(10^{\circ} \mathrm{C}\) as well as a carrier pipe distance of 100 mm at single pipes.
\(\mathrm{T}_{\mathrm{M}}=\left(\mathrm{T}_{\mathrm{VL}}+\mathrm{T}_{\mathrm{RL}}\right): 2-\mathrm{T}_{\mathrm{E}}\); Example: \(\left(90^{\circ}+70^{\circ}\right): 2-10^{\circ}=70 \mathrm{~K}\) average temperature

\title{
3 FLEXIBLE COMPOUND SYSTEMS
}

\section*{3.3 isocu}

\subsection*{3.3.1 Carrier Pipe / Connection Technology / Operating Conditions}

\section*{Carrier Pipe}

The isocu-pipe consists of a coldfinished soft, seamless drawn copper pipe acc. to EN 1057. Dimension, specification and static data and tolerances acc. to DIN 12449, material CuDHP/R 220, No. CW024A, in standard wall thickness, technical delivery conditions acc. to DIN 12735-2.

\section*{Connection Technology}

The connection of the copper pipe will be made by capillary-
 soldering-fittings, acc. to DIN 1254 with the same wall thickness than the pipes, or by special suitable press fittings. It is not allowed to enlarge the copper pipes. The recommendations and/or instructions of the manufacturers of the fittings concerning soldering procedure and kind of soldering have to be considered.

\section*{Operating Conditions}

Permissible short-term peak temperature \(T_{\max }\) :
Maximum operating pressure \(p_{B}\) :
Maximum permissible axial-tension \(\sigma_{\text {max }}\) :
Leak detecting:
\(130^{\circ} \mathrm{C}\)
25 bar
\(110 \mathrm{~N} / \mathrm{mm}^{2}\)
without

Possible liquids: All potable and heating water as well as other material resistant liquids
\begin{tabular}{|l|c|c|l|c|c|}
\hline \multicolumn{7}{|c|}{ Technical data Cu-DHP/R 220 at \(\mathbf{2 0}^{\circ} \mathbf{C}\)} \\
\hline Property & Unit & Value & Property & Unit & Value \\
\hline Volume weight \(p\) & \(\mathrm{~kg} / \mathrm{dm}^{3}\) & 8,94 & Elastic modulus \(E\) & \(\mathrm{~N} / \mathrm{mm}^{2}\) & 132.000 \\
Tensile stress \(R_{m}\) & \(\mathrm{~N} / \mathrm{mm}^{2}\) & \(220-260\) & Thermal conductivity \(\lambda\) & \(\mathrm{W} /(\mathrm{m} \bullet \mathrm{K})\) & 305,00 \\
Yield stress \(R_{e}\) & \(\mathrm{~N} / \mathrm{mm}^{2}\) & 65 & Specific heat capacity \(c\) & \(\mathrm{~kJ} /(\mathrm{kg} \bullet \mathrm{K})\) & 0,386 \\
Wall roughness \(k\) & mm & 0,0015 & Thermal expansion coefficient \(\alpha\) & \(\mathrm{K}^{-1}\) & \(16,8 \bullet 10^{-6}\) \\
\hline
\end{tabular}

\subsection*{3.3.2 Dimensions resp. Types / Heat Loss and Capacity}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{ Dimensions Copper Pipe Cu-DHP/R 220 }
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Type} & \multicolumn{6}{|c|}{Dimensioning} & \multicolumn{4}{|c|}{Heat Loss} \\
\hline & \multirow[t]{2}{*}{Watercontent v in \(1 / \mathrm{m}\)} & \multirow[t]{2}{*}{Volumeflow V in \(\mathrm{m}^{3} / \mathrm{h}\)} & \multirow[t]{2}{*}{Flowspeed w in \(\mathrm{m} / \mathrm{s}\)} & \multicolumn{3}{|l|}{Transmittable capacity P in kW at spread} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { Coefficient } \\
\mathbf{u}_{\mathrm{ER} / \mathrm{DR}} \\
\mathrm{in}^{2} \\
\mathrm{~W} /(\mathrm{m} \bullet \mathrm{~K})
\end{array}
\]} & \multicolumn{3}{|l|}{q per pipe meter in W/m at average temperature \(\mathbf{T}_{\mathbf{M}}\)} \\
\hline & & & & 20 K & 30 K & 40 K & & 70 K & 60 K & 50 K \\
\hline isocu - 22 & 0,314 & 0,57-1,13 & 0,5-1,0 & 13-26 & 20-39 & 26-53 & 0,1282 & 8,974 & 7,692 & 6,410 \\
\hline isocu - 28 & 0,515 & 0,93-1,85 & 0,5-1,0 & 22-43 & 32-65 & 43-86 & 0,1397 & 9,777 & 8,381 & 6,984 \\
\hline isocu -22+22 & 0,314 & 0,57-1,13 & 0,5-1,0 & 13-26 & 20-39 & 26-56 & 0,1894 & 13,257 & 11,365 & 9,473 \\
\hline isocu -28+28 & 0,515 & 0,93-1,85 & 0,5-1,0 & 22-43 & 32-65 & 43-86 & 0,2537 & 17,757 & 15,222 & 12,688 \\
\hline
\end{tabular}

Basis of the values see previous page.

\subsection*{3.4.1 Carrier Pipe / Connection Technology / Operating Conditions}

\section*{Carrier Pipe}

The isopex-pipe consists of cross-linked (X) PE-Xa, basic material PE, with peroxide (a) added during extrusion. General material requirements acc. to DIN 16892, pipe series respectively measures acc. to DIN 16893.
Resistant to aggressive chemicals and water.
PolyEthylene is an organic connection of carbon- and hydrogen molecules. For PolyEthylene-cross-linked (X) H-atoms will be removed out of the molecule chains, irreversible carbon-
 connections will develop, which will form a cross link between the chains. During extrusion of PE peroxide (a) will be added, the oxygen will bind the hydrogen atoms. The mechanical high resistant, but not weldable material PE-Xa comes into being.

Heating pipe: Pipe-range 1; series 5; SDR 11; operating pressure max. 6 bar, PN 12,5; with red coloured organic oxygen diffusion barrier of E/VAL (Ethylenvenylalcohol) acc. to DIN 4726. According to AGFW-information FW 420 „District Heating pipelines with plastic-carrier pipes (PMR)".

Sanitary pipe: Pipe-range 2; series 3,20; SDR 7,40; operating pressure max. 10 bar, PN 20; tested acc. to DVGW- documentation W 531, with DVGW- and ÖVGW-inspection mark.

\section*{Connection Technology}

The connection of PE-Xa-pipes is made in buried sections preferably with press resp. clamp connections- and connection pieces, see chapter 3.6.5. Inside of buildings as well as for sanitary installations also screwed connections may be used. Electric welded connections are available on request.

\section*{Operating Conditions}

Maximum permanent operating temp. \(T_{B \max }: \quad 80^{\circ} \mathrm{C}\)
Maximum operating temperature \(T_{\max }\) : \(\quad 95^{\circ} \mathrm{C}\)
Maximum operating pressure \(p_{B}\) : \(6 / 10\) bar
Leak detecting:
without
Possible liquids: potable and heating water, chemicals as well as other material resistant liquids
\begin{tabular}{|l|c|c|l|c|c|}
\hline \multicolumn{7}{|c|}{ Technical data PE-Xa at \(\mathbf{2 0}{ }^{\circ} \mathbf{C}\)} \\
\hline Property & Unit & Value & Property & Unit & Value \\
\hline Volume weight \(p\) & \(\mathrm{~kg} / \mathrm{dm}^{3}\) & 0,938 & Elastic modulus \(E\) & \(\mathrm{~N} / \mathrm{mm}^{2}\) & 600 \\
Tensile stress \(R_{m}\) & \(\mathrm{~N} / \mathrm{mm}^{2}\) & \(\geq 20\) & Thermal conductivity \(\lambda\) & \(\mathrm{W} /(\mathrm{m} \bullet \mathrm{K})\) & 0,38 \\
Yield stress \(R_{e}\) & \(\mathrm{~N} / \mathrm{mm}^{2}\) & 17 & Specific heat capacity \(c\) & \(\mathrm{~kJ} /(\mathrm{kg} \bullet \mathrm{K})\) & 2,3 \\
Wall roughness \(k\) & mm & 0,007 & Thermal expansion coefficient \(\alpha\) & \(\mathrm{K}^{-1}\) & \(15,0 \bullet 10^{-5}\) \\
\hline
\end{tabular}

Due to the production principle of isopex-pipes a longitudinal water tight compound system comes into being, that means the three materials (PE-Xa, PUR-foam, PELD) are connected by axial force with each other. At increasing temperature the E-modulus of the carrier pipe is getting smaller and will cause only very slight tension. Because of soil-embedding the tension will be additionally reduced and in case of a compound system like isopex, the axial heat extension will be nearly totally suppressed.

That means, isopex-pipes may be designed without expansion components and at building entries without anchors, due to the compound.
3.4 isopex

\subsection*{3.4.2 Dimensions resp. Types}

\section*{Single Pipe Heating - 6 bar}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Dimensions PE-Xa-Pipe} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Jacket-Pipe } \\
\text { Outside- } \varnothing \\
\mathbf{D}_{\mathbf{a}} \\
\text { in } \mathrm{mm}
\end{gathered}
\]} & \multirow[t]{2}{*}{Deliverylength in 1,00 m steps L in m} & \multirow[t]{2}{*}{Maximum coil-outside- \(\varnothing\) \(d_{\text {R }}\) in mm} & \multirow[t]{2}{*}{Minimumbending radius \(r\) in m} & \multirow[t]{2}{*}{Weight without water G in \(\mathrm{kg} / \mathrm{m}\)} \\
\hline Type & \[
\begin{gathered}
\hline \text { Outside- } \\
\varnothing \\
d_{a} \\
\text { in } m m \\
\hline
\end{gathered}
\] & Wallthickness s in mm & & & & & \\
\hline H-25/H-25 v & 25,0 & 2,3 & 75/90 & \(\leq 360 / 250\) & 2530 & 0,7/0,8 & 0,82 / 1,03 \\
\hline H-32/H-32v & 32,0 & 2,9 & 75/90 & \(\leq 360\) / 250 & 2530 & 0,8 / 0,8 & 0,90/1,10 \\
\hline H-40/H-40 v & 40,0 & 3,7 & 90/110 & \(\leq 250 / 200\) & 2530 & 0,8 / 0,9 & 1,22 / 1,62 \\
\hline H-50/H-50 v & 50,0 & 4,6 & 110/125 & \(\leq 250 / 170\) & 2530 / 2550 & 0,9/1,0 & 1,79 / 2,06 \\
\hline H-63/H-63v & 63,0 & 5,8 & 125 / 140 & \(\leq 170 / 150\) & 2550 / 2690 & 1,0/1,1 & 2,35/2,82 \\
\hline H-75/H-75 v & 75,0 & 6,8 & 140/160 & \(\leq 170 / 120\) & 2690 / 2700 & 1,1/1,2 & 3,14/3,58 \\
\hline H-90/H-90 v & 90,0 & 8,2 & 160 / 180 & \(\leq 120 / 85\) & 2700 / 2800 & 1,2/1,4 & 4,07 / 4,65 \\
\hline H-110 & 110,0 & 10,0 & 180 & max. 85 & 2700 & 1,4 & 5,43 \\
\hline H-125 & 125,0 & 11,4 & 180 & max. 85 & 2700 & 1,4 & 6,14 \\
\hline H-125 Stg. & 125,0 & 11,4 & 225 & only as & bar & 2,2 & 7,85 \\
\hline H-160 Stg. & 160,0 & 14,6 & 250 & in 12 m & alable & 3,0 & 10,78 \\
\hline
\end{tabular}

Double Pipe Heating - 6 bar
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Dimensions PE-Xa-Pipe} & \multirow[b]{3}{*}{Jacket-Pipe Outside- \(\varnothing\) \(D_{a}\) in mm} & \multirow[t]{3}{*}{\begin{tabular}{l}
Deliverylength in \(1,00 \mathrm{~m}\) steps \\
L in \(m\)
\end{tabular}} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Maximum } \\
& \text { coil- } \\
& \text { outside-Ø } \\
& d_{\mathbf{R}} \\
& \text { in } \mathrm{mm} \\
& \hline
\end{aligned}
\]} & \multirow[t]{3}{*}{\begin{tabular}{l}
Minimumbending radius \\
r in \(m\)
\end{tabular}} & \multirow[t]{3}{*}{Weight without water
\[
\text { in } \mathrm{kg} / \mathrm{m}
\]} \\
\hline \multirow{2}{*}{Type} & Outside\(\varnothing\) & Wallthickness & & & & & \\
\hline & \[
\begin{gathered}
\mathbf{d}_{\mathbf{a}} \\
\text { in } \mathrm{mm}
\end{gathered}
\] & \[
\begin{gathered}
\mathbf{s} \\
\text { in } \mathrm{mm}
\end{gathered}
\] & & & & & \\
\hline H-20 + 20 & 2•20,0 & 2,0 & 75 & max. 360 & 2500 & 0,9 & 0,71 \\
\hline H-25+25/H-25+25v & 2 •25,0 & 2,3 & 90/110 & 250 / 200 & 2500 / 2530 & 0,9/0,9 & 0,92/1,19 \\
\hline H-32+32/H-32+32 v & 2•32,0 & 2,9 & 110/125 & 200 / 150 & 2500/2550 & 0,9/1,0 & 1,34 / 1,50 \\
\hline H-40+40/H-40+40v & \(2 \cdot 40,0\) & 3,7 & 125/140 & 150/120 & 2500/2700 & 1,0/1,1 & 1,74/2,10 \\
\hline H-50+50/H-50+50v & \(2 \cdot 50,0\) & 4,6 & 160 / 180 & 120 / 85 & 2800/2800 & 1,2/1,4 & 2,71/3,08 \\
\hline H-63+63 & 2•63,0 & 5,8 & 180 & max. 85 & 2800 & 1,4 & 3,67 \\
\hline
\end{tabular}

Single Pipe Sanitary - 10 bar
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Dimensions PE-Xa-Pipe} & \multirow[b]{3}{*}{Jacket-Pipe Outside-Ø Da in mm} & \multirow[t]{3}{*}{Deliverylength in 1,00 m steps L in \(m\)} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Maximum } \\
& \text { coil- } \\
& \text { outside- } \varnothing \\
& d_{\mathbf{R}} \\
& \text { in } \mathrm{mm}
\end{aligned}
\]} & \multirow[t]{3}{*}{Minimumbending radius r in m} & \multirow[t]{3}{*}{Weight without water G in \(\mathrm{kg} / \mathrm{m}\)} \\
\hline & Outside\(\varnothing\) & Wallthickness & & & & & \\
\hline Type & \[
\underset{\substack{\mathbf{d}_{\mathbf{a}} \\ \text { in } \mathrm{mm}}}{ }
\] & \[
\begin{gathered}
\mathbf{s} \\
\text { in } \mathrm{mm}
\end{gathered}
\] & & & & & \\
\hline S-25 & 25,0 & 3,5 & 75 & 24-360 & 2530 & 0,7 & 0,89 \\
\hline S-32 & 32,0 & 4,4 & 75 & 24-360 & 2530 & 0,8 & 1,01 \\
\hline S-40 & 40,0 & 5,5 & 90 & 24-250 & 2530 & 0,8 & 1,39 \\
\hline S-50 & 50,0 & 6,9 & 110 & 24-200 & 2530 & 0,9 & 2,05 \\
\hline S-63 & 63,0 & 8,7 & 125 & 24-150 & 2550 & 1,0 & 2,77 \\
\hline
\end{tabular}

Single pipe heating - 6 bar may be used for dimensions \(>\) S - 63, providing that operation pressure will be maximum 6 bar. Admissible operating pressure \(p_{B}\) see chapter 3.4.3.

Double Pipe Sanitary - 10 bar
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Dimensions PE-Xa-Pipe} & \multirow[b]{3}{*}{\begin{tabular}{l}
Jacket-Pipe Outside-Ø
\[
D_{a}
\] \\
in mm
\end{tabular}} & \multirow[t]{3}{*}{Deliverylength in \(1,00 \mathrm{~m}\) steps L in m} & \multirow[t]{3}{*}{Maximum coil-outside- \(\varnothing\) \(d_{R}\) in mm} & \multirow[t]{3}{*}{Minimumbending radius \(r\) in \(m\)} & \multirow[t]{3}{*}{Weight without water G in \(\mathrm{kg} / \mathrm{m}\)} \\
\hline & Outside\(\varnothing\) & Wallthickness & & & & & \\
\hline Type & \[
\begin{gathered}
\mathbf{d}_{\mathbf{a}} \\
\text { in } \mathrm{mm}
\end{gathered}
\] & \[
\begin{gathered}
s \\
\text { in } \mathrm{mm}
\end{gathered}
\] & & & & & \\
\hline S-25+20 & 25,0 / 20,0 & 3,5 / 2,8 & 90 & 24-250 & 2530 & 0,9 & 0,98 \\
\hline S \(-32+20\) & 32,0 / 20,0 & 4,4/2,8 & 110 & 24-200 & 2530 & 0,9 & 1,37 \\
\hline S \(-40+25\) & 40,0 / 25,0 & 5,5 / 3,5 & 125 & 24-150 & 2550 & 1,0 & 1,78 \\
\hline S \(-50+32\) & 50,0 / 32,0 & 6,9/4,4 & 140 & 24-140 & 2690 & 1,1 & 2,53 \\
\hline S-63+32 & 63,0 / 32,0 & 8,7/4,4 & 160 & 24-120 & 2700 & 1,2 & 3,23 \\
\hline
\end{tabular}

\subsection*{3.4.3 Heat Loss and Capacity (Dimensions)}

\section*{Single Pipe Heating - 6 bar}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Type} & \multicolumn{6}{|c|}{Dimensioning} & \multicolumn{4}{|c|}{Heat Loss} \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
Water- \\
content \\
v in \(1 / \mathrm{m}\)
\end{tabular}} & \multirow[t]{2}{*}{Volumeflow V in \(\mathrm{m}^{3} / \mathrm{h}\)} & \multirow[t]{2}{*}{Flowspeed w in \(\mathrm{m} / \mathrm{s}\)} & \multicolumn{3}{|l|}{Transmittable capacity P in kW at spread} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Coefficient } \\
\mathbf{u}_{\mathrm{ER}} \\
\text { in } \\
\mathrm{W} /(\mathrm{m} \bullet \mathrm{~K})
\end{gathered}
\]} & \multicolumn{3}{|l|}{```
 q per pipe meter
 in W/m at
average temperature }\mp@subsup{\mathbf{T}}{\mathbf{M}}{
```} \\
\hline & & & & 20 K & 30 K & 40 K & & 70 K & 60 K & 50 K \\
\hline H-25 & 0,327 & 0,59-1,18 & 0,5-1,0 & 14-27 & 21-41 & 27-55 & 0,1246 & 8,719 & 7,473 & 6,228 \\
\hline H-32 & 0,539 & 1,17-2,33 & 0,6-1,2 & 27-54 & 41-81 & 54-108 & 0,1582 & 11,077 & 9,495 & 7,912 \\
\hline H-40 & 0,835 & 1,80-3,61 & 0,6-1,2 & 42-84 & 63-126 & 84-168 & 0,1646 & 11,525 & 9,879 & 8,232 \\
\hline H-50 & 1,307 & 3,30-6,59 & 0,7-1,4 & 77-153 & 115-230 & 153-307 & 0,1693 & 11,854 & 10,160 & 8,467 \\
\hline H-63 & 2,075 & 5,23-10,5 & 0,7-1,4 & 122-243 & 182-365 & 243-487 & 0,1921 & 13,449 & 11,528 & 9,607 \\
\hline H-75 & 2,961 & 8,53-17,1 & 0,8-1,6 & 198-397 & 298-595 & 397-793 & 0,2109 & 14,764 & 12,655 & 10,546 \\
\hline H-90 & 4,254 & 12,3-24,5 & 0,8-1,6 & 285-570 & 428-855 & 570-1140 & 0,2264 & 15,851 & 13,587 & 11,322 \\
\hline H-110 & 6,362 & 20,6-41,2 & 0,9-1,8 & 479-959 & 719-1438 & 959-1918 & 0,2608 & 18,257 & 15,649 & 13,041 \\
\hline H-125 & 8,203 & 26,6-53,2 & 0,9-1,8 & 618-1237 & 927-1855 & 1237-2473 & 0,3390 & 23,730 & 20,340 & 16,950 \\
\hline H-125 Stg. & 8,203 & 26,6-53,2 & 0,9-1,8 & 618-1237 & 927-1855 & 1237-2473 & 0,2245 & 15,717 & 13,472 & 11,226 \\
\hline H-160 Stg. & 13,437 & 48,4-96,7 & 1,0-2,0 & 1125-2250 & 1688-3376 & 2250-4501 & 0,2883 & 20,179 & 17,296 & 14,413 \\
\hline H-25 v & 0,327 & 0,59-1,18 & 0,5-1,0 & 14-27 & 21-41 & 27-55 & 0,1072 & 7,506 & 6,434 & 5,362 \\
\hline H-32 v & 0,539 & 1,17-2,33 & 0,6-1,2 & 27-54 & 41-81 & 54-108 & 0,1313 & 9,191 & 7,878 & 6,565 \\
\hline H-40 v & 0,835 & 1,80-3,61 & 0,6-1,2 & 42-84 & 63-126 & 84-168 & 0,1342 & 9,396 & 8,054 & 6,711 \\
\hline H-50 v & 1,307 & 3,30-6,59 & 0,7-1,4 & 77-153 & 115-230 & 153-307 & 0,1470 & 10,288 & 8,819 & 7,349 \\
\hline H-63v & 2,075 & 5,23-10,5 & 0,7-1,4 & 122-243 & 182-365 & 243-487 & 0,1681 & 11,766 & 10,085 & 8,404 \\
\hline H-75 v & 2,961 & 8,53-17,1 & 0,8-1,6 & 198-397 & 298-595 & 397-793 & 0,1761 & 12,330 & 10,568 & 8,807 \\
\hline H-90 v & 4,254 & 12,3-24,5 & 0,8-1,6 & 285-570 & 428-855 & 570-1140 & 0,1915 & 13,402 & 11,488 & 9,573 \\
\hline
\end{tabular}

\section*{Double Pipe Heating - 6 bar}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Type} & \multicolumn{6}{|c|}{Dimensioning} & \multicolumn{4}{|c|}{Heat Loss} \\
\hline & \multirow[t]{2}{*}{Watercontent v in \(1 / \mathrm{m}\)} & \multirow[t]{2}{*}{\begin{tabular}{l}
Volume- \\
Flow \\
V \\
in \(\mathrm{m}^{3} / \mathrm{h}\)
\end{tabular}} & \multirow[t]{2}{*}{Flowspeed
\[
\begin{gathered}
w \\
\text { in } \mathrm{m} / \mathrm{s}
\end{gathered}
\]} & \multicolumn{3}{|l|}{\begin{tabular}{l}
Transmittable Capacity \\
P in kW \\
at spread
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Coefficient } \\
u_{D R} \\
\text { in } \\
\mathrm{W} /(\mathrm{m} \bullet \mathrm{~K})
\end{gathered}
\]} & \multicolumn{3}{|l|}{\[
\begin{gathered}
\text { q per Pipe Meter } \\
\text { in } \mathrm{W} / \mathrm{m} \text { at } \\
\text { average Temperature } \mathbf{T}_{\mathrm{M}}
\end{gathered}
\]} \\
\hline & & & & 20 K & 30 K & 40 K & & 70 K & 60 K & 50 K \\
\hline H-20 + 20 & 0,201 & 0,36-0,72 & 0,5-1,0 & 8-17 & 13-25 & 17-34 & 0,2107 & 14,743 & 12,639 & 10,535 \\
\hline H-25+25 & 0,327 & 0,59-1,18 & 0,5-1,0 & 14-27 & 21-41 & 27-55 & 0,2148 & 15,033 & 12,887 & 10,742 \\
\hline H-32+32 & 0,539 & 1,17-2,33 & 0,6-1,2 & 27-54 & 41-81 & 54-108 & 0,2346 & 16,419 & 14,076 & 11,732 \\
\hline H \(-40+40\) & 0,835 & 1,80-3,61 & 0,6-1,2 & 42-84 & 63-126 & 84-168 & 0,2638 & 18,462 & 15,827 & 13,192 \\
\hline H-50+50 & 1,307 & 3,30-6,59 & 0,7-1,4 & 77-153 & 115-230 & 153-307 & 0,2464 & 17,243 & 14,783 & 12,322 \\
\hline H-63+63 & 2,075 & 5,23-10,5 & 0,7-1,4 & 122-243 & 182-365 & 243-487 & 0,2935 & 20,542 & 17,610 & 14,678 \\
\hline H-25+25 v & 0,327 & 0,59-1,18 & 0,5-1,0 & 14-27 & 21-41 & 27-55 & 0,1744 & 12,206 & 10,464 & 8,721 \\
\hline H-32+32v & 0,539 & 1,17-2,33 & 0,6-1,2 & 27-54 & 41-81 & 54-108 & 0,1975 & 13,823 & 11,850 & 9,877 \\
\hline H-40+40 v & 0,835 & 1,80-3,61 & 0,6-1,2 & 42-84 & 63-126 & 84-168 & 0,2223 & 15,557 & 13,337 & 11,116 \\
\hline H-50+50 v & 1,307 & 3,30-6,59 & 0,7-1,4 & 77-153 & 115-230 & 153-307 & 0,2103 & 14,717 & 12,617 & 10,517 \\
\hline
\end{tabular}

\section*{Admissible Operating Pressure \(p_{B}\) in bar}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Duration} & \multicolumn{10}{|c|}{Permanent Operating Temperature \(\mathrm{T}_{\mathrm{B}}\) in \({ }^{\circ} \mathrm{C}\)} \\
\hline & \(10^{\circ}\) & \(20^{\circ}\) & \(30^{\circ}\) & \(40^{\circ}\) & \(50^{\circ}\) & \(60^{\circ}\) & \(70^{\circ}\) & \(80^{\circ}\) & \(90^{\circ}\) & \(95^{\circ}\) \\
\hline 1 year & 17,9 & 15,8 & 14,0 & 12,5 & 11,1 & 9,9 & 8,9 & 8,0 & 7,2 & 6,8 \\
\hline 5 years & 17,5 & 15,5 & 13,8 & 12,2 & 10,9 & 9,7 & 8,7 & 7,8 & 7,0 & 6,6 \\
\hline 10 years & 17,4 & 15,4 & 13,7 & 12,1 & 10,8 & 9,7 & 8,6 & 7,7 & 6,9 & --- \\
\hline 25 years & 17,2 & 15,2 & 13,5 & 12,0 & 10,7 & 9,5 & 8,5 & 7,6 & --- & - \\
\hline 50 years & 17,1 & 15,1 & 13,4 & 11,9 & 10,6 & 9,5 & 8,5 & --- & --- & --- \\
\hline
\end{tabular}

The mentioned data are corresponding to DIN 16893 for flow medium water with a safety factor of \(S_{D}=1,25\).

\title{
3 FLEXIBLE COMPOUND SYSTEMS
}

\section*{Single Pipe Sanitary - 10 bar}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Type} & \multicolumn{7}{|c|}{Dimensioning} & \multicolumn{4}{|c|}{Heat Loss} \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
Watercontent \\
v in \(1 / \mathrm{m}\)
\end{tabular}} & \multirow[t]{2}{*}{VolumeFlow v in \(\mathrm{m}^{3} / \mathrm{h}\)} & \multirow[t]{2}{*}{\begin{tabular}{l}
Flow- \\
Speed \\
in \(\mathrm{m} / \mathrm{s}\)
\end{tabular}} & \multirow[t]{2}{*}{VolumeFlow V in \(\mathrm{m}^{3} / \mathrm{h}\)} & \multirow[t]{2}{*}{\begin{tabular}{l}
Flow- \\
Speed
\[
\text { in } \mathrm{m} / \mathrm{s}
\]
\end{tabular}} & \multirow[t]{2}{*}{VolumeFlow V in \(\mathrm{m}^{3} / \mathrm{h}\)} & \multirow[t]{2}{*}{\begin{tabular}{l}
Flow- \\
Speed \\
in \(\mathrm{m} / \mathrm{s}\)
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { Coefficient } \\
u_{\mathrm{ER}} \\
\text { in } \\
\mathrm{W} /(\mathrm{m} \cdot \mathrm{~K}) \\
\hline
\end{array}
\]} & \multicolumn{3}{|l|}{q per Pipe Meter in W/m at averageTemperature \(\mathbf{T}_{\mathbf{M}}\)} \\
\hline & & & & & & & & & 60 K & 50 K & 40 K \\
\hline S-25 & 0,254 & 1,099 & 1,2 & 1,191 & 1,3 & 1,283 & 1,4 & 0,1237 & 7,425 & 6,187 & 4,950 \\
\hline S-32 & 0,423 & 1,826 & 1,2 & 1,978 & 1,3 & 2,131 & 1,4 & 0,1570 & 9,419 & 7,849 & 6,279 \\
\hline S-40 & 0,661 & 2,853 & 1,2 & 3,091 & 1,3 & 3,329 & 1,4 & 0,1633 & 9,780 & 8,166 & 6,533 \\
\hline S-50 & 1,029 & 4,446 & 1,2 & 4,817 & 1,3 & 5,187 & 1,4 & 0,1679 & 10,075 & 8,396 & 6,717 \\
\hline S-63 & 1,633 & 7,055 & 1,2 & 7,643 & 1,3 & 8,231 & 1,4 & 0,1903 & 11,418 & 9,515 & 7,612 \\
\hline
\end{tabular}

Double Pipe Sanitary - 10 bar
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Type} & \multicolumn{7}{|c|}{Dimensioning} & \multicolumn{4}{|c|}{Heat Loss} \\
\hline & \multirow[t]{2}{*}{Watercontent in \(1 / m\)} & \multirow[t]{2}{*}{\begin{tabular}{l}
Volume- \\
Flow \\
V in \(\mathrm{m}^{3} / \mathrm{h}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Flow- \\
Speed \\
in \(\mathrm{m} / \mathrm{s}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Volume- \\
Flow \\
V in \(\mathrm{m}^{3} / \mathrm{h}\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Flow- \\
Speed \\
in \(\mathrm{m} / \mathrm{s}\)
\end{tabular}} & \multirow[t]{2}{*}{VolumeFlow V in \(\mathrm{m}^{3} / \mathrm{h}\)} & \multirow[t]{2}{*}{FlowSpeed
\[
\begin{gathered}
\mathbf{w} \\
\text { in } \mathrm{m} / \mathrm{s}
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Coefficient } \\
\mathbf{u}_{\mathrm{DR}} \\
\text { in } \\
\mathrm{W} /(\mathrm{m} \bullet \mathrm{~K})
\end{gathered}
\]} & \multicolumn{3}{|l|}{q per Pipe Meter in W/m at average Temperature \(\mathrm{T}_{\mathrm{M}}\)} \\
\hline & & & & & & & & & 60 K & 50 K & 40 K \\
\hline S-25+20 & 0,254 & 1,374 & 1,5 & 1,466 & 1,6 & 1,557 & 1,7 & 0,1930 & 11,578 & 9,674 & 7,769 \\
\hline S-32+20 & 0,423 & 2,283 & 1,5 & 2,435 & 1,6 & 2,587 & 1,7 & 0,1893 & 11,356 & 9,510 & 7,664 \\
\hline S-40+25 & 0,661 & 3,567 & 1,5 & 3,805 & 1,6 & 4,042 & 1,7 & 0,2053 & 12,319 & 10,319 & 8,319 \\
\hline S-50+32 & 1,029 & 5,558 & 1,5 & 5,928 & 1,6 & 6,299 & 1,7 & 0,2348 & 14,086 & 11,800 & 9,514 \\
\hline S-63+32 & 1,633 & 8,819 & 1,5 & 9,407 & 1,6 & 9,995 & 1,7 & 0,2765 & 16,588 & 13,928 & 11,267 \\
\hline
\end{tabular}

The mentioned data are based on a medium specific thermal capacity [ \(\mathrm{c}_{\mathrm{m}}\) ] of the water of 4187 \(\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})\), a soil covering height \(\left[\mathrm{U}_{\mathrm{H}}\right]\) of \(0,60 \mathrm{~m}\), a thermal conductivity of the soil \(\left[\lambda_{\mathrm{E}}\right]\) of \(1,2 \mathrm{~W} /(\mathrm{m} \bullet \mathrm{K})\), a medium soil temperature \(\left[T_{E}\right]\) of \(10^{\circ} \mathrm{C}\) and for single pipes on a carrier pipe distance of 100 mm . The flow speed \([\mathrm{w}]\) has to be determined specifically.
\(\mathrm{T}_{\mathrm{M}}=\left(\mathrm{T}_{\mathrm{VL}}+\mathrm{T}_{\mathrm{RL}}\right): 2-\mathrm{T}_{\mathrm{E}}\); Example: \(\left(80^{\circ}+60^{\circ}\right): 2-10^{\circ}=60 \mathrm{~K}\) average temperature.

Admissible Operating Pressure \(\mathrm{p}_{\mathrm{B}}\) in bar - Sanitary
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Duration} & \multicolumn{10}{|c|}{Permanent Operating Temperature \(\mathrm{T}_{\mathrm{B}}\) in \({ }^{\circ} \mathrm{C}\)} \\
\hline & \(10^{\circ}\) & \(20^{\circ}\) & \(30^{\circ}\) & \(40^{\circ}\) & \(50^{\circ}\) & \(60^{\circ}\) & \(70^{\circ}\) & \(80^{\circ}\) & \(90^{\circ}\) & \(95^{\circ}\) \\
\hline 1 year & 28,3 & 25,1 & 22,3 & 19,8 & 17,7 & 15,8 & 14,1 & 12,7 & 11,4 & 10,8 \\
\hline 5 years & 27,8 & 24,6 & 21,9 & 19,4 & 17,3 & 15,5 & 13,8 & 12,4 & 11,1 & --- \\
\hline 10 years & 27,6 & 24,4 & 21,7 & 19,3 & 17,2 & 15,3 & 13,7 & 12,3 & 11,0 & --- \\
\hline 25 years & 27,3 & 24,2 & 21,4 & 19,1 & 17,0 & 15,2 & 13,6 & 12,1 & --- & --- \\
\hline 50 years & 27,1 & 24,0 & 21,3 & 18,9 & 16,8 & 15,0 & 13,4 & --- & --- & --- \\
\hline
\end{tabular}

The mentioned data are corresponding to DIN 16893 for flow medium water with a safety factor of \(\mathrm{S}_{D}=1,25\).

3 FLEXIBLE COMPOUND SYSTEMS
3.5 isoclima

\subsection*{3.5.1 Carrier Pipe / Connection Technology / Operating Conditions}

\section*{Carrier Pipe}

The isoclima pipe consists of a seamless extruded, impact- and shatter-resistant, ductile and stable high-density polyurethane known as polyethylene 100. General quality requirements, pipe series, and measurements according to DIN 8075, DIN 8074 / DIN EN 12201-2. Polyethylene 100 pipes are tested for drinking water suitability and tested in accordance with DVGW Directive W270.

\section*{Connection Technology}


The connection of the isoclima pipe occurs in underground sections, preferably using weldable PE-HD joints; butt welds and screw-type connections are also options. A wide range of connection components is available.

\section*{Operating Conditions}

Maximum operating temperature \(T_{\text {max }}: \quad+30^{\circ} \mathrm{C}\)
Minimum operating temperature \(T_{\text {max }}\) : \(-20^{\circ} \mathrm{C}\)
Maximum operating pressure \(p_{B}\) :
Leak detecting:

16 bar
without

\subsection*{3.5.2 Dimensions resp. Types / Energy Loss and Capacity}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{Series 1} \\
\hline \multicolumn{3}{|l|}{Dimensions PE100-Pipe} & \multirow[b]{2}{*}{\begin{tabular}{l}
PEHD- \\
Outside- \(\varnothing\)
\[
\begin{gathered}
\mathbf{D}_{\mathrm{a}} \\
\text { in } \mathrm{mm}
\end{gathered}
\]
\end{tabular}} & \multirow[b]{2}{*}{\begin{tabular}{l}
Maximum Delivery length \\
L in \(m\)
\end{tabular}} & \multirow[b]{2}{*}{\begin{tabular}{l}
Maximum coil- \\
outside- \(\varnothing\) \\
\(d_{R}\) in mm
\end{tabular}} & \multirow[b]{2}{*}{Minimumbending radius
\[
\begin{gathered}
\mathbf{r} \\
\text { in } \mathrm{m} \\
\hline
\end{gathered}
\]} & \multirow[b]{2}{*}{Weight without Water
\[
\begin{gathered}
\mathrm{G} \\
\text { in } \mathrm{kg} / \mathrm{m}
\end{gathered}
\]} & \multirow[b]{2}{*}{\begin{tabular}{l}
Heat- \\
Loss coefficient \\
u-Value \\
in \(W /(m \cdot K)\)
\end{tabular}} \\
\hline Type & \begin{tabular}{l}
Outside- \\
\(\varnothing\) \\
\(d_{a}\) in mm
\end{tabular} & Wallthickness
\[
\begin{gathered}
\mathbf{s} \\
\text { in } \mathrm{mm}
\end{gathered}
\] & & & & & & \\
\hline isoclima-20 & 20,0 & 2,0 & 65 & 250 & 2500 & 0,8 & 0,66 & 0,1115 \\
\hline isoclima-25 & 25,0 & 2,3 & 75 & 250 & 2500 & 0,8 & 0,82 & 0,1188 \\
\hline isoclima-32 & 32,0 & 2,9 & 75 & 250 & 2500 & 0,9 & 0,90 & 0,1511 \\
\hline isoclima-40 & 40,0 & 3,7 & 90 & 200 & 2500 & 0,9 & 1,23 & 0,1573 \\
\hline isoclima-50 & 50,0 & 4,6 & 110 & 200 & 2500 & 1,0 & 1,80 & 0,1617 \\
\hline isoclima-63 & 63,0 & 5,8 & 125 & 150 & 2500 & 1,1 & 2,37 & 0,1836 \\
\hline isoclima-75 & 75,0 & 6,8 & 140 & 140 & 2700 & 1,2 & 3,15 & 0,2017 \\
\hline isoclima-90 & 90,0 & 8,2 & 160 & 120 & 2700 & 1,4 & 4,10 & 0,2166 \\
\hline isoclima-110 & 110,0 & 10,0 & 160 & 85 & 2700 & 1,4 & 4,89 & 0,3173 \\
\hline isoclima-110 & 110,0 & 10,0 & 180 & 85 & 2700 & 1,4 & 5,47 & 0,2498 \\
\hline
\end{tabular}

\title{
3 FLEXIBLE COMPOUND SYSTEMS
}

\subsection*{3.6 Flexible pipe preformed parts}

\subsection*{3.6.1 General}

Depending on the application form parts such as elbows, branches will be delivered on request as well as custom molded parts from the PJP program if required.

\subsection*{3.6.2 House Entry Elbow 90}


House-entry-elbows are useful for connecting buildings without cellars by passing the concrete ground-plate of the house. They will be produced generally in standard lengths of \(1,00 \times 1,50 \mathrm{~m}\). Depending from kind of flexible pipe with steel, copper, PE-Xa or PE100-carrier pipe. For post insulation of the connection spot in the soil a jacket pipe connecting coupler will be required, see Design-Manual, chapter 6.

In case of isopex-pipes the connection with the continuing pipe will be made inside of the building by using connection couplers with welding ends or outside threads, see chapter 3.6.5.

Orders of house-entry-elbows should clearly indicate all carrier- and jacket pipe dimensions respectively -type and operating pressure. In case of double pipes additionally the position of the bend, vertical (s), horizontal (w) or falling (f) should be mentioned. In case of different carrier pipe diameters, the position of the smaller carrier pipe diameter will be generally in 12:00 o'clock position.

Example of order:

House-Entry-Elbow (HEB) isoflex:
\(\begin{array}{ll}\text { Single: } & \text { HEB-28 / 75 } \\ & \text { for isoflex - Standard }\end{array}\)

House-Entry-Elbow isopex-Heating:
\(\begin{array}{ll}\text { Single: } & \begin{array}{l}\text { HEB }-40 / 90,6 \text { bar } \\ \text { for isopex-Heating Type H-40 }\end{array} \\ \text { Double: } & \begin{array}{l}\text { HEB-s }-63+63 / 180,6 \text { bar } \\ \text { for isopex-Heating Type H-63+63 }\end{array}\end{array}\)

House-Entry-Elbow (HEB) isocu:
Double: HEB-s - \(2 \times 28\) / 90
for isocu - Double \(28+28\)

\section*{House-Entry-Elbow isopex-Sanitary:}

\author{
Single: HEB-32 / 75, 10 bar for isopex-Sanitary Type S-32 \\ Double: HEB-s - 50 + 32 / 140, 10 bar for isopex-Sanitary Type S-50+32
}

Carrier- and jacket-pipe dimensions isoflex see chapter 3.2.2, isocu see chapter 3.3.2 and isopex see chapter 3.4.2. All connection couplings, protection- and end caps as well as jacket-pipe couplers

3 FLEXIBLE COMPOUND SYSTEMS
3.6 Flexible pipe preformed parts

\subsection*{3.6.3 Bifurcated Pipe}


Bifurcated pipes are used for transition of two single pipes to one double pipe and are produced generally with the same dimensions. For isoflex-applications, bifurcated pipes will consist of steel carrier pipe, for isopex-Heating and isopex-Sanitary of crosslinked PE-Xa. In relation with isocu they will consist of copper pipes according to DIN 1754/17671.
For post insulation of the connection spots in the soil, corresponding connection couplers will be required, according to the jacket-pipe dimensions, see Design-Manual, chapter 6. The connection has to be ensued to the requirements of the advanced systems.
Orders of bifurcated pipes should clearly indicate all carrier- and jacket-pipe dimensions respectively kind and operating pressure. In case of double pipes the position of the smaller dimension will be generally in 12:00- o'clock position.

\section*{Example of order:}

Bifurcated Pipe (HR-I) isoflex:
HR-I for isoflex, \(2 \times\) Single 28 / 75 to \(1 \times\) Double \(28+28 / 110\)

Bifurcated Pipe (HR-I) isopex-Heating:
HR-I for isopex-Heating, 6 bar \(2 \times\) Single H-63/125 to \(1 \times\) Double \(\mathbf{H}-\mathbf{6 3 + 6 3}\) / 180

Bifurcated Pipe (HR-I) isocu:
HR-I for isocu, \(2 \times\) Single 22 / 65
to \(1 \times\) Double \(22+22 / 90\)

Bifurcated Pipe (HR-I) isopex-Sanitary:
HR-I for isopex-Sanitary, 10 bar
\(2 \times\) Single S-50 / 110 and S-32/75
to \(1 \times\) Double \(\mathbf{S} \mathbf{- 5 0 + 3 2 / 1 4 0}\)

Carrier- and jacket-pipe dimensions isoflex see chapter 3.2.2, isocu see chapter 3.3.2 and isopex chapter 3.4.2. All connection couplings as well as jacket-pipe couplers are not included within the delivery of a bifurcated pipe. Due to manufacturing reasons the jacket-pipe dimensions may differ partly from the PELD-dimensions of the flexible pipes. Available dimensions and measures on request.
During assembling the correct position of single- and double pipes, respectively the position of the bifurcated pipe as well as the axial measures A and H has to be considered. The condition for expansion compensation (L-, Z, or U-elbow) has to be provided at the transitions of the singlepipe system before the bifurcated pipe, because bifurcated pipes have to be installed generally at pipe-static neutral pipeline spots. In case of changing of the system within an exit-pipe of a branch, between branch and bifurcated pipe a rigid fitting part of at least 2,50 m lengths has to be installed for compensation of lateral expansion.

\title{
3 FLEXIBLE COMPOUND SYSTEMS
}
3.6 Flexible pipe preformed parts

\subsection*{3.6.4 GFK-Assembling Fittings}

GFK-Assembling-Branch 90

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Passage in mm} & \multicolumn{8}{|c|}{Branch resp. Exit \(\mathrm{D}_{\mathrm{a} 2}\) in mm} \\
\hline \(\mathrm{D}_{\mathrm{a} 1}\) & \(\mathrm{D}_{\mathrm{a} 3}\) & 65 & 75 & 90 & 110 & 125 & 140 & 160 & 180 \\
\hline 65 & 65 & \(\checkmark\) & & & & & & & \\
\hline 75 & 65 & \(\checkmark\) & \(\checkmark\) & & & & & & \\
\hline 75 & 75 & \(\checkmark\) & \(\checkmark\) & & & & & & \\
\hline 90 & 65 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & & \\
\hline 90 & 75 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & & \\
\hline 90 & 90 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & & \\
\hline 110 & 65 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline 110 & 75 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline 110 & 90 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline 110 & 110 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline 125 & 75 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline 125 & 90 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline 125 & 110 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline 125 & 125 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline 140 & 90 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline 140 & 110 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline 140 & 125 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline 140 & 140 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline 160 & 110 & -- & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline 160 & 125 & -- & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline 160 & 140 & -- & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline 160 & 160 & -- & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline 180 & 125 & -- & -- & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline 180 & 140 & -- & -- & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline 180 & 160 & -- & -- & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline 180 & 180 & -- & -- & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}

GFK-Assembling-Elbow 90


3 FLEXIBLE COMPOUND SYSTEMS
3.6 Flexible pipe preformed parts

\section*{GFK-Assembling-Branch 90 / GFK-Assembling-Elbow 90 \({ }^{\circ}\)}

Orders for GFK-fittings should clearly indicate the corresponding jacket pipe dimensions [ \(\mathrm{D}_{\mathrm{a}}\) ] or/and the flexible pipe types. All half shells consist of a break proof fibre glass polyester (GFK). The delivery includes the two shells and the required quantity of stainless-hexagon-screws M8 \(\times 40\), sealing stripes made of butyl-rubber, eventually required reducing rings, brass threaded-valve including closing cap for the PUR-foam filling-hole, as well as the corresponding quantity of ready-made foam portion.

\section*{Example of order:}

GFK-Assembling-Branch, passage \(x\) branch \(\times\) passage ( \(D_{a 1} \times D_{a 2} \times D_{a 3}\) ):
isopex: GFK-T - \(140 \times 110 \times 125\) isocu: GFK-T - \(75 \times 65 \times 75\)

\section*{GFK-Assembling-Elbow:}
isopex: GFK-B - 180
for isopex, Type \(\mathbf{H}-63+63\)
isocu: GFK-T - \(75 \times 65 \times 75\)
for isocu, Type \(\mathbf{2 8}\) to \(\mathbf{2 2}\) to \(\mathbf{2 8}\)
isoflex: GFK-B-90
for isoflex, Type 28 v

\title{
3 FLEXIBLE COMPOUND SYSTEMS
}

\subsection*{3.6 Flexible pipe preformed parts}

\subsection*{3.6.5 Components Carrier Pipe isopex}

\section*{Connecting- and Elbow-Coupling}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{4}{*}{\begin{tabular}{l}
Dimensions \\
PE-Xa-Pipe
\end{tabular}} & \multicolumn{6}{|c|}{Heating - 6 bar} & \multicolumn{6}{|c|}{Sanitary - 10 bar} \\
\hline & \multicolumn{2}{|c|}{Press} & \multicolumn{2}{|c|}{Screw} & \multicolumn{2}{|r|}{Clamp} & \multicolumn{2}{|r|}{Press} & \multicolumn{2}{|c|}{Screw} & \multicolumn{2}{|c|}{Clamp} \\
\hline & Conn. & Elbow \\
\hline & PVK & PBK & SVK & SBK & KVK & KBK & PVK & PBK & SVK & SBK & KVK & KBK \\
\hline \(20 \times 20\) & -- & -- & -- & -- & \(\checkmark\) \\
\hline \(25 \times 25\) & \(\checkmark\) \\
\hline \(32 \times 32\) & \(\checkmark\) \\
\hline \(40 \times 40\) & \(\checkmark\) \\
\hline \(50 \times 50\) & \(\checkmark\) \\
\hline \(63 \times 63\) & \(\checkmark\) \\
\hline \(75 \times 75\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \(90 \times 90\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \(110 \times 110\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \(125 \times 125\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline \(160 \times 160\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & -- & -- & -- & -- & -- & -- & -- & -- \\
\hline
\end{tabular}

Conn. = Connecting-Coupling
Elbow = Elbow-Coupling


Orders for connecting- or/and elbow-couplings ( \(90^{\circ}\) bends) should bear the exact description, operating pressure and kind of connection to the isopex-pipe ends, for which press fittings, screwable or clampable connections can be used.

For buried sections as well as for heating installations ( 6 bar ) generally press fittings or clamp fittings should be used. Inside of buildings in manholes as well as for sanitary applications (10 bar) also screwed connections can be used.

\section*{Example of order:}

\section*{Press-Connection-Coupling (PVK):}
\begin{tabular}{ll} 
Heating: & \begin{tabular}{l} 
PVK \(-110 \times 110,6\) bar, \\
with press fittings \\
for isopex-Heating Type \(\mathbf{H - 1 1 0}\)
\end{tabular} \\
Sanitary: & \begin{tabular}{l} 
PVK \(-25 \times 25,10\) bar, \\
with press fittings \\
for isopex-Sanitary Type S-25
\end{tabular}
\end{tabular}

Screw-Connection-Coupling (SVK):
Heating: SVK - \(32 \times 32,6\) bar, with screw fittings for isopex-Heating Type \(\mathbf{H}-32\)

Sanitary: SVK - 50 x 50, 10 bar, with screw fittings for isopex-Sanitary Type S-50

Clamp-Connection-Coupling (KVK):
Heating: KVK - \(63 \times 63,6\) bar, with clamp fittings for isopex-Heating Type \(\mathbf{H}-63\)

Sanitary: KVK - \(25 \times 25,10\) bar, with clamp fittings for isopex-Sanitary Type \(\mathbf{S - 2 5}\)

Press-Elbow-Coupling (PBK):
Heating: PBK -90 \(\times 90,6\) bar, with press fittings for isopex-Heating Type \(\mathbf{H - 9 0}\)

Sanitary: PBK - \(63 \times 63,10\) bar, with press fittings for isopex-Sanitary Type S-63

\section*{Screw-Elbow-Coupling (SBK):}

Heating: SBK - \(75 \times 75,6\) bar, with screw fittings for isopex-Heating Type \(\mathbf{H - 7 5}\)

Sanitary: SBK - \(40 \times 40,10\) bar, with screw fittings for isopex-Sanitary Type S-40

Clamp-Elbow-Coupling (KBK):
Heating: KBK - \(50 \times 50,6\) bar, with clamp fittings for isopex-Heating Type \(\mathbf{H - 5 0}\)

Sanitary: KBK - \(40 \times 40,10\) bar, with clamp fittings for isopex-Sanitary Type S-40

According to type and dimension, press-connection-couplings and clamp-connection-couplings determined from isoplus, may consist of steel 435 GH or dezincification resistant brass MS58/M560 or red cast iron RG 7. Screw-connection-couplings generally acc. to DIN 8076 in heavy brass quality.

\title{
3 FLEXIBLE COMPOUND SYSTEMS
}

\subsection*{3.6 Flexible pipe preformed parts}

Reducing-Coupling
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Dimensions} & \multicolumn{3}{|c|}{Heating - 6 bar} & \multicolumn{3}{|c|}{Sanitary - 10 bar} \\
\hline & Press & Screw & Clamp & Press & Screw & Clamp \\
\hline \multirow[b]{2}{*}{PE-Xa-Pipe} & Reduction & Reduction & Reduction & Reduction & Reduction & Reduction \\
\hline & PRK & SRK & KRK & PRK & SRK & KRK \\
\hline \(25 \times 20\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline \(32 \times 20\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline \(32 \times 25\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline \(40 \times 25\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline \(40 \times 32\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline \(50 \times 32\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline \(50 \times 40\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline \(63 \times 40\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline \(63 \times 50\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline \(75 \times 50\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & -- & -- & -- \\
\hline \(75 \times 63\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & -- & -- & -- \\
\hline \(90 \times 63\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & -- & -- & -- \\
\hline \(90 \times 75\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & -- & -- & -- \\
\hline \(110 \times 75\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & -- & -- & -- \\
\hline \(110 \times 90\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & -- & -- & -- \\
\hline \(125 \times 90\) & \(\checkmark\) & -- & \(\checkmark\) & -- & -- & -- \\
\hline \(125 \times 110\) & \(\checkmark\) & -- & \(\checkmark\) & -- & -- & -- \\
\hline \(160 \times 110\) & \(\checkmark\) & -- & \(\checkmark\) & -- & -- & -- \\
\hline \(160 \times 125\) & \(\checkmark\) & -- & \(\checkmark\) & -- & -- & -- \\
\hline
\end{tabular}


Orders for reducing-couplings should bear the exact description, operating pressure and kind of connection to isopex-pipe ends, for which press fittings, screwable or clampable connections can be used.

For buried sections as well as for heating installations (6 bar) generally press fittings or clamp fittings should be used. Inside of buildings in manholes as well as for sanitary applications (10 bar) also screwable connections can be used.

3 FLEXIBLE COMPOUND SYSTEMS
3.6 Flexible pipe preformed parts

\section*{Example of order:}

\section*{Press-Reducing-Coupling (PRK):}
\begin{tabular}{ll} 
Heating: & \begin{tabular}{l} 
PRK \(-110 \times 75,6\) bar, \\
with press fittings \\
for isopex-Heating Type \(\mathbf{H - 1 1 0}\) to \(\mathbf{H - 7 5}\)
\end{tabular} \\
Sanitary: & \begin{tabular}{l} 
PRK \(-25 \times 20,10\) bar, \\
with press fittings \\
for isopex-Sanitary Type S-25 to S-20
\end{tabular}
\end{tabular}

\section*{Screw-Reducing-Coupling (SRK):}
\begin{tabular}{ll} 
Heating: & \begin{tabular}{l} 
SRK \(-\mathbf{3 2 \times 2 5 , 6}\) bar, \\
with screw fittings \\
for isopex-Heating Type \(\mathbf{H - 3 2}\) to \(\mathbf{H - 2 5}\)
\end{tabular} \\
Sanitary: & \begin{tabular}{l} 
SRK \(-50 \times 32,10\) bar, \\
with screw fittings \\
for isopex-Sanitary Type S-50 to S-32
\end{tabular}
\end{tabular}

\section*{Clamp-Reducing-Coupling (KRK):}

Heating: KRK - \(40 \times 32,6 \mathrm{bar}\), with clamp fittings for isopex-Heating Type \(\mathbf{H}-40\) to \(\mathbf{H - 3 2}\)

Sanitary: KRK - \(\mathbf{2 5 \times 2 0}\), 10 bar, with clamp fittings for isopex-Sanitary Type S-25 to S-20

According to type and dimension, press-reducing-couplings and clamp-reducing-couplings determined from isoplus, may consist of steel 435 GH or dezincification resistant brass MS58/M560 or red cast iron RG 7. Screw-reducing-couplings generally acc. to DIN 8076 in heavy brass quality.

\title{
3 FLEXIBLE COMPOUND SYSTEMS
}

\subsection*{3.6 Flexible pipe preformed parts}

\section*{Alignment-Coupling inside of building with Welding-End or Outside-Thread}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{4}{*}{\begin{tabular}{l}
Dimensions \\
PE-XaPipe
\end{tabular}} & \multicolumn{6}{|c|}{Heating-6 bar} & \multicolumn{6}{|c|}{Sanitary - 10 bar} \\
\hline & \multicolumn{2}{|c|}{Press} & \multicolumn{2}{|c|}{Screw} & \multicolumn{2}{|c|}{Clamp} & \multicolumn{2}{|c|}{Press} & \multicolumn{2}{|c|}{Screw} & \multicolumn{2}{|c|}{Clamp} \\
\hline & SE & AG \\
\hline & PASE & PAAG & SASE & SAAG & KASE & KAAG & PASE & PAAG & SASE & SAAG & KASE & KAAG \\
\hline \(20 \times 1 / 2^{\text {c/ }}\) & -- & -- & -- & -- & -- & -- & -- & \(\checkmark\) & -- & \(\checkmark\) & -- & \(\checkmark\) \\
\hline \(25 \times 3 / 4{ }^{4}\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & -- & \(\checkmark\) & -- & \(\checkmark\) & -- & \(\checkmark\) \\
\hline \(32 \times 1\) " & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & -- & \(\checkmark\) & -- & \(\checkmark\) & -- & \(\checkmark\) \\
\hline \(40 \times 1{ }^{1 / 4}{ }^{4}\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & -- & \(\checkmark\) & -- & \(\checkmark\) & -- & \(\checkmark\) \\
\hline \(50 \times 11 / 2^{\prime \prime}\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & -- & \(\checkmark\) & -- & \(\checkmark\) & -- & \(\checkmark\) \\
\hline \(63 \times 2{ }^{\text {" }}\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & -- & \(\checkmark\) & -- & \(\checkmark\) & -- & \(\checkmark\) \\
\hline \(75 \times 2 \times 1 / 2^{\prime \prime}\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & -- & -- & -- & -- & -- & -- \\
\hline \(90 \times 3\) " & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & -- & -- & -- & -- & -- & -- \\
\hline \(110 \times 4\) " & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & -- & -- & -- & -- & -- & -- \\
\hline \(125 \times 5\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & -- & -- & -- & -- & -- & -- \\
\hline \(160 \times 6{ }^{\text {a }}\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & -- & -- & -- & -- & -- & -- \\
\hline \multicolumn{13}{|l|}{\(\mathrm{SE}=\) Welding-End \(\quad \mathrm{AG}=\) Outside-Thread} \\
\hline
\end{tabular}

All alignment-couplings with outside-thread (AG) acc. to DIN EN 10226 for connection of the following pipe line. The corresponding thread coupler acc. to DIN EN 10241 should be provided at site.


Orders for alignment-couplings should bear the exact description, operating pressure and kind of connection to isopex-pipe ends, for which press fittings, screwable or clampable connections can be used.

For buried sections as well as for heating installations (6 bar) generally press fittings or clamp fittings should be used. Inside of buildings in manholes as well as for sanitary applications (10 bar) also screwable connections can be used.

3 FLEXIBLE COMPOUND SYSTEMS
3.6 Flexible pipe preformed parts

\section*{Example of Order:}

Press-Alignment with Welding-End (PASE):
Heating: PASE - \(110 \times 4\) ", 6 bar, with press fittings for isopex-Heating Type \(\mathbf{H - 1 1 0}\)

Screw-Alignment with Welding-End (SASE):
Heating: SASE - \(32 \times 1\) ", 6 bar, with screw fittings for isopex-Heating Type \(\mathbf{H - 3 2}\)

\section*{Clamp-Alignment with Welding-End (KASE):}

Heating: KASE - \(63 \times 2\) ", 6 bar, with clamp fittings for isopex-Heating Type \(\mathbf{H - 6 3}\)

Press-Alignment with Outside-Thread (PAAG):
Heating: PAAG - \(90 \times 3 \times, 6\) bar, with press fittings for isopex-Heating Type H-90

Sanitary: PAAG - \(40 \times 1^{\prime \prime}, 10\) bar, with press fitting for isopex-Sanitary Type S-40

Screw-Alignment with Outside-Thread (SAAG):
Heating: SAAG-25 x 3/4", 6 bar, with screw fittings for isopex-Heating Type \(\mathbf{H - 7 5}\)

Sanitary: SAAG - \(63 \times 2\) 2", 10 bar, with screw fittings for isopex-Sanitary Type S-63

Clamp-Alignment with Outside-Thread (KAAG):
Heating: KASE - \(32 \times 1\) "', 6 bar, with clamp fittings for isopex-Heating Type \(\mathbf{H - 3 2}\)

Sanitary: KASE - \(63 \times 2\) 2", 10 bar, with clamp fittings for isopex-Sanitary Type S-63

According to type and dimension, press-alignments and clamp-alignments determined from isoplus, may consist of steel 435 GH or dezincification resistant brass MS58/M560 or red cast iron RG 7. Screw-alignments generally acc. to DIN 8076 in heavy brass quality.

\title{
3 FLEXIBLE COMPOUND SYSTEMS
}

\subsection*{3.6 Flexible pipe preformed parts}

Alignment-Angle \(90^{\circ}\) inside of building with one Outside-Thread
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Dimensions PE-Xa-Pipe} & \multicolumn{2}{|r|}{Heating - 6 bar} & \multicolumn{2}{|r|}{Sanitary - 10 bar} \\
\hline & Screw-Angle with Outside-Thread SWAG & Clamp-Angle with Outside-Thread KWAG & Screw-Angle with Outside-Thread SWAG & Clamp-Angle with Outside-Thread KWAG \\
\hline \(20 \times 1 / 2^{\prime \prime}\) & -- & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline \(25 \times 3 / 4{ }^{\prime \prime}\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline \(32 \times 1\) " & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline \(40 \times 11 / 4{ }^{\prime \prime}\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline \(50 \times 11 / 2^{\prime \prime}\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline \(63 \times 2\) " & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline \(75 \times 21 / 2^{\prime \prime}\) & \(\checkmark\) & -- & -- & -- \\
\hline \(90 \times 3{ }^{\text {c }}\) & \(\checkmark\) & -- & -- & -- \\
\hline \(110 \times 4\) " & \(\checkmark\) & -- & -- & -- \\
\hline \(125 \times 5\) " & \(\checkmark\) & -- & -- & -- \\
\hline \(160 \times 6\) " & \(\checkmark\) & -- & -- & -- \\
\hline
\end{tabular}

All \(90^{\circ}\)-alignment-angles with outside thread (AG) acc. to DIN 10226 for connection with the following pipe line. The corresponding thread coupler acc. to DIN 10241 should be provided at site.


Orders for alignment-angles should bear the exact description and operating pressure. The connection to the isopex pipe end is carried out as a screw or clamp connection, whereby the screw connections are only used at accessible material transitions in buildings or shafts.

\section*{Example of order:}

Screw-Angle with Outside-Thread (SWAG):
Heating: SWAG - \(90 \times 3\) ", 6 bar, with screw fittings for isopex-Heating Type \(\mathbf{H}-90\)

Sanitary: SWAG - \(63 \times 2 \times\) ", 10 bar, with screw fittings for isopex-Sanitary Type S-63

Clamp-Angle with Outside-Thread (KWAG):
Heating: KWAG - \(32 \times 1\) ", 6 bar, with clamp fittings for isopex-Heating Type \(\mathbf{H - 3 2}\)

Sanitary: KASE-63 x 2", 10 bar, with clamped fittings for isopex-Sanitary Type S-63

According to type and dimension, alignments-angles determined from isoplus, may consist of steel 435 GH or dezincification resistant brass MS58/M560 or red cast iron RG 7. Screw-angles generally acc. to DIN 8076 in heavy brass quality.

\section*{is plus}

T-Piece - Heating, 6 bar



\title{
3 FLEXIBLE COMPOUND SYSTEMS
}
3.6 Flexible pipe preformed parts

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Passage}} & \multicolumn{5}{|c|}{Clamp-T-piece (KT)} \\
\hline & & \multicolumn{5}{|c|}{Branch resp. soil pipe \(\mathrm{d}_{\mathrm{a} 2}\)} \\
\hline \(\mathrm{d}_{\mathrm{a} 1}\) & \(\mathrm{d}_{\mathrm{a} 3}\) & 25 & 32 & 40 & 50 & 63 \\
\hline 25 & 25 & \(\checkmark\) & & & & \\
\hline 32 & 25 & \(\checkmark\) & \(\checkmark\) & & & \\
\hline 32 & 32 & \(\checkmark\) & \(\checkmark\) & & & \\
\hline 40 & 25 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline 40 & 32 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline 40 & 40 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline 50 & 25 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline 50 & 32 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline 50 & 40 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline 50 & 50 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline 63 & 32 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline 63 & 40 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline 63 & 50 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline 63 & 63 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}

Orders for T-pieces should bear the three dimensions of the \(t\)-piece [ \(\mathrm{d}_{\mathrm{a} 1-3}\) ], operating pressure and kind of connection to isopex-pipe ends, for which press fittings, screwable or clampable connections can be used.

For buried sections as well as for heating installations ( 6 bar ) generally press fittings or clamp fittings should be used. Inside of buildings in manholes as well as for sanitary applications (10 bar) also screwed connections can be used. Other dimensions on request.

3 FLEXIBLE COMPOUND SYSTEMS 3．6 Flexible pipe preformed parts

\section*{T－Piece－Sanitary， 10 bar}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Passage}} & \multicolumn{6}{|c|}{Clamp－T－Piecce（KT）} \\
\hline & & \multicolumn{6}{|c|}{Branch resp．soil pipe \(\mathrm{d}_{\mathrm{a} 2}\)} \\
\hline \(\mathrm{d}_{\mathrm{a} 1}\) & \(\mathrm{d}_{\mathrm{a} 3}\) & 20 & 25 & 32 & 40 & 50 & 63 \\
\hline 20 & 20 & \(\checkmark\) & & & & & \\
\hline 25 & 20 & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline 25 & 25 & \(\checkmark\) & \(\checkmark\) & & & & \\
\hline 32 & 20 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline 32 & 25 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline 32 & 32 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & \\
\hline 40 & 20 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline 40 & 25 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline 40 & 32 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline 40 & 40 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & \\
\hline 50 & 25 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline 50 & 32 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline 50 & 40 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline 50 & 50 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline 63 & 32 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline 63 & 40 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline 63 & 50 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline 63 & 63 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}

Orders for T－pieces should bear the three dimensions of the t－piece \(\left[d_{a 1-3}\right]\) ，operating pressure and kind of connection to isopex－pipe ends，for which press fittings，screwable or clampable connections can be used．

For buried sections as well as for heating installations（ 6 bar ）generally press fittings or clamp fittings should be used．Inside of buildings in manholes as well as for sanitary applications（10 bar）also screwable connections can be used．Other dimensions on request．

\section*{3 FLEXIBLE COMPOUND SYSTEMS}

\subsection*{3.6 Flexible pipe preformed parts}

Example of order: passage \(x\) branch \(x\) passage \(\left(\right.\) da \(\left._{1} \times \mathrm{da}_{2} \mathbf{x ~ d a}{ }_{3}\right)\) :

Press-T-Piece (PT):
Heating: PT - \(110 \times 50 \times 75,6\) bar,
with press fittings
for isopex-Heating Type \(\mathbf{H - 1 1 0}\) to \(\mathbf{H - 5 0}\) to \(\mathbf{H - 7 5}\)
Sanitary: PT - \(40 \times 32 \times 32,10\) bar,
with press fittings
for isopex-Sanitary Type S-25 to S-32 to S-32

Screw-T-Piece (ST):
Heating: ST - \(63 \times 40 \times 50,6\) bar, with screw fittings for isopex-Heating Type \(\mathbf{H - 3 2}\) to \(\mathbf{H}-40\) to \(\mathbf{H}-50\)

Sanitary:
ST - \(50 \times 32 \times 40\), 10 bar, screw fittings for isopex-Sanitary Type S-50 auf S-32 auf S-40

Clamp-T-Piece (KT):
Heating: KT - \(40 \times 32 \times 40,6\) bar,
with clamp fittings
for isopex-Heating Type \(\mathbf{H - 4 0}\) to \(\mathbf{H - 3 2}\) to \(\mathrm{H}-40\)
Sanitary: KT-25 x \(\mathbf{2 0 \times 2 0}\), 10 bar, with clamp fittings for isopex-Sanitary Type S-25 to S-20 to S-20

According to type and dimension, Press-T-Pieces and Clamp-T-Pieces determined from isoplus, may consist of steel 435 GH or dezincification resistant brass MS58/M560 or red cast iron RG 7. Screw-T-Pieces generally acc. to DIN 8076 in heavy brass quality.

\section*{4 INDUSTRIAL PIPE / SPECIAL PIPE}
4.1 General
4.1.1 Principle / Heat Insulation / Jacket-Pipe ..... 4/1
4.1.2 Advantages of preinsulated Industrial Pipes ..... \(4 / 2\)
4.1.3 Application areas / References. ..... 4/3-4

\title{
4 INDUSTRIAL PIPE / SPECIAL PIPE
}

\subsection*{4.1 General}

\subsection*{4.1.1 Principle / Heat Insulation / Jacket-Pipe}

The prefabricated and preinsulated respectively produced isoplus industrial-pipes are based on an experience of 35 years of the isoplus-group in the energy sector of district heat supply. In order to reach the highest degree of efficiency and most effective information, the industrial requirements will be arranged exclusively by a central business unit isoplus-industry (e-mail: industrie@isoplus.de) located in Germany.


Due to the variety of the available pipe qualities it will be possible to construct the suitable prefabricated and preinsulated pipe system, for nearly every kind of application respectively for every medium. The range of application includes sewage-, climate- and ventilation equipment, as well as district cooling, biomass equipment, oil- and district gas supply, ship- and oilplatform constructions up to aggressive solvents and acids containing, chemical laboratory liquids.
isoplus industrial-pipes consist of three components carrier pipe + insulation + jacket-pipe. This simple unit construction system will guarantee an unlimited variety of combinations. isoplus is constructing prefabricated insulated rigid and flexible jacket-pipes, rigid sheet metal- and steel-jacket pipes with PEHD- or SPIRO-jacket-pipe.


Of course it will be possible to integrate a leak detecting system like IPS-Cu \({ }^{\circledR}\) or IPS-NiCr \({ }^{\circledR}\) or/and a fully automatical control and detecting-technology IPS-Digital \({ }^{\circledR}\) into the industrial pipes. At all steel pipes a profile pipe can be provided for connection free assembling and in order to install an attending trace later on. This may be used as heat tracing, for constant temperature system or for frost-protection. Alternatively it will be possible to fix a heat tracing directly at the carrier pipe.

\subsection*{4.1.2 Advantages of preinsulated Industrial Pipes}

\section*{The essential advantages of preinsulated industrial pipes}
\(\Rightarrow\) reduced weight of pipe
\(\Rightarrow\) no corrosion from outside
\(\Rightarrow\) long term corrosion protection
\(\Rightarrow\) effectively avoided environment emissions
\(\Rightarrow\) space saving small jacket-pipe dimensions
\(\Rightarrow\) no moisture penetration at the pipe clamps
\(\Rightarrow\) no cold- or heat transition at the pipe clamps
\(\Rightarrow\) definite improved energy loss due to PUR-foam
\(\Rightarrow\) high sound protection respectively sound values
\(\Rightarrow\) pipe clamps will be required only at the jacket-pipe
\(\Rightarrow\) frames are only required at the seams of the pipes
\(\Rightarrow\) minimum life-time of 30 years, according to EN 253
\(\Rightarrow\) complete product range incl. accessories and fittings
\(\Rightarrow\) essential reduced conductivity of the insulation material
\(\Rightarrow\) easy cleaning by use of high pressure steam aggregate
\(\Rightarrow\) pressure resistant PE-jacket, spiro-jacket or steel-jacket
\(\Rightarrow\) most various thermal resistance of \(-30^{\circ}\) up to \(+400^{\circ} \mathrm{C}\)
\(\Rightarrow 100 \%\) water tight PE-jacket-pipes and connection couplers
\(\Rightarrow\) certified Quality Management according to DIN EN ISO 9001
\(\Rightarrow\) practically no maintenance intervals, low expenditure of maintenance
\(\Rightarrow\) resistant jacket-pipe against chemicals-, UV-, salt and exhaust fumes
\(\Rightarrow\) mechanical extremely stable and therefore passable pipe construction
\(\Rightarrow\) reduced insulation thickness, i.e. compared to heat equipment prescription
\(\Rightarrow\) very short assembling periods due to installation and insulation in one working step

\section*{The right pipeline for every application}


\section*{PEHD-jacket-pipe rigid}

Single pipe DN 20 to DN 1000
Double pipe DN 20 to DN 200
Temperatures min. acc. to EN 253
Pressure stages up to PN 25


PELD-jacket-pipe flexible Single pipe DN 20 to DN 125 Double pipe DN 20 to DN 50
Temperatures \(-20^{\circ} \mathrm{C}\) to \(+95^{\circ} \mathrm{C} /+130^{\circ} \mathrm{C}\)
Pressure stages up to PN 25


Spirofalz-jacket-pipe
DN 20 to DN 1000
Temperatures min. acc. to EN 253
Pressure stages up to PN 25


\section*{Steel-jacket-pipe}

DN 25 to DN 1200
temperature \(-30^{\circ} \mathrm{C}\) to \(+400^{\circ} \mathrm{C}\) Pressure stages up to PN 64
4.1 General

\subsection*{4.1.3 Application areas / References}
isoplus industrial-pipes will be used among others for the following applications:
```

Acid containing
Acids
=> Gas pipelines
Air condition technology
A Air-technology
A Alcoholic Industry
B Ballast water
Bath- finishing-equipment
Beer
B Bio-gas
Biomass heat equipment
C Canalisation
Chemical industry
Chemicals
C Chilled water
=> Chocolate
Circulation
Cleaning equipment
Cold methods
=> Coldness
Combined heat power plants
Combustion exhaust fumes
=> condense
Cooking plant
Cooling
District cooling
District gas
District heating
Dump-drainage
=> Exhaust fumes
F Faeces
F Fertiliser
F Fire-fighting equipment
F Flammable liquids
=> Fodder

```
\(\Rightarrow\) Food stuff industry
\(\Rightarrow\) Fuel
\(\Rightarrow\) Regeneration equipment
\(\Rightarrow\) Geothermal
\(\Rightarrow\) Glycol
\(\Rightarrow\) Heat-carrier-oil
\(\Rightarrow\) Heating equipment
\(\Rightarrow\) Heavy oil-/thermal oil
\(\Rightarrow\) High pressure steam
\(\Rightarrow\) Hot air
\(\Rightarrow\) Hot water
\(\Rightarrow\) Hydrochloride acid
\(\Rightarrow\) Ice-water
\(\Rightarrow\) Industrial cold water
\(\Rightarrow\) Industrial water
\(\Rightarrow\) Kerosene
\(\Rightarrow\) Laboratory liquids
\(\Rightarrow\) Lawn heating
\(\Rightarrow\) Liquid food stuff
\(\Rightarrow\) Low pressure steam
\(\Rightarrow\) Mash i.e. mustard
\(\Rightarrow\) Mineral water
\(\Rightarrow\) Mining
\(\Rightarrow\) Natural gas
\(\Rightarrow\) Offshore-platform
\(\Rightarrow\) Oil-transport
\(\Rightarrow\) Paper industry
\(\Rightarrow\) Patrol
\(\Rightarrow\) Petroleum
\(\Rightarrow\) Potable water
\(\Rightarrow\) Power plant water
\(\Rightarrow\) Pressure air
\(\Rightarrow\) Printing industry
\(\Rightarrow\) Pure gas
\(\Rightarrow\) Rain water
\(\Rightarrow\) Refinery
\(\Rightarrow\) Air condition cold water
\(\Rightarrow\) Roof-drainage
\(\Rightarrow\) Run-way-heating
\(\Rightarrow\) Sanitary equipment
\(\Rightarrow\) Sea-water
\(\Rightarrow\) Sea-water desalination
\(\Rightarrow\) Seep-water
\(\Rightarrow\) Sewage
\(\Rightarrow\) Sewage plant
\(\Rightarrow\) Ship-building
\(\Rightarrow\) Smoke-gas cleaning
\(\Rightarrow\) Solar systems
\(\Rightarrow\) Solar-collectors
\(\Rightarrow\) Solvents
\(\Rightarrow\) Soot water
\(\Rightarrow\) Staining equipment
\(\Rightarrow\) Steam
\(\Rightarrow\) Storage water
\(\Rightarrow\) Sugar industry
\(\Rightarrow\) Sulphuric acid
\(\Rightarrow\) Synthetic fibre industry
\(\Rightarrow\) Textile-industry
\(\Rightarrow\) Thermal water
\(\Rightarrow\) Treacle
\(\Rightarrow\) Underwater pipeline
\(\Rightarrow\) Ventilation
\(\Rightarrow\) Warm water
\(\Rightarrow\) Washing equipment
\(\Rightarrow\) Waste air
\(\Rightarrow\) Waster treatment
\(\Rightarrow\) Water
\(\Rightarrow\) Wet-oil
\(\Rightarrow\).................. and so on

In case that your special application should not be mentioned above, please call us or send an e-mail to industrie@isoplus.de.
Or fill in the following lines and send this page to Fax-No.: +49 (0) 3632 / 65 16-16.
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l} 
Name / Company: \\
(stamp)
\end{tabular} & & Contact person: & \\
\hline & Street: & \\
\hline & Post code / City: & \\
\hline & Telephone: & \\
\hline e-mail: & Facsimile: & \\
\hline internet: & & Date: & \\
\hline \begin{tabular}{l} 
remark \\
resp. Application:
\end{tabular} & & \\
\hline
\end{tabular}

\section*{References（Extract from \(\geq \mathbf{3 0 0} \mathbf{m} ; \Sigma=52 \mathrm{~km}\) ）}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Project／City／Remark} & \multirow[t]{2}{*}{Country} & \multirow[t]{2}{*}{Application} & \multicolumn{3}{|c|}{Pipe Material} & \multirow[t]{2}{*}{\begin{tabular}{l}
Dimension from／to in \\
DN
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{|c}
\begin{tabular}{c} 
Length \\
in
\end{tabular} \\
\hline \(\mathbf{k m}\) \\
\hline 0.42
\end{tabular}} \\
\hline & & & IR & Dä & MR & & \\
\hline AMD Dresden；incl．Epoxy resin－coating & GER & Chilled water & St & PUR & ALF & 600 & 0，42 \\
\hline Barracks Amberg & GER & Potable water & Es1 & PUR & PEH & 80－40 & 0，50 \\
\hline BASF airport Munich & GER & Pipe－bridge & St & PUR & SPF & 250 & 0，50 \\
\hline Basin Leuna & GER & Condense & Es2 & PUR & ALF & 400 & 1，30 \\
\hline Bayer AG Antwerpen；incl．corrosion protection & B & Process water & St & PUR & ALF & 80 & 0，76 \\
\hline Cityhall Potsdam & GER & Sanitary & Cuh & PUR & PEH & 15－32 & 0，70 \\
\hline Congress－Centre Hannover & GER & Coldness & St & PUR & SPF & 100－200 & 0，40 \\
\hline Dairy Erfurt & GER & Steam & St & MW & St & 200 & 1，50 \\
\hline Degussa AG Wesseling & GER & Acid & Es2 & PUR & ALF & 40－50 & 0，50 \\
\hline Deusa International GmbH Kehmstedt & GER & Salt water & St & PUR & SPF & 100－300 & 1，58 \\
\hline Dueker construction Rhine Harbour Karlsruhe & GER & District heating & St & PUR & PEH & 500 & 0，30 \\
\hline Federal Armed Forces Königsbrück & GER & Heating & PVC & PUR & PEH & 25－100 & 0，80 \\
\hline Flower hyper－market Straelen & GER & Coldness & Es1 & PUR & PEH & 50－300 & 1，50 \\
\hline Flower market Heerenveen & NED & Coldness & Es1 & PUR & PEH & 300 & 1，60 \\
\hline Greppin；incl． 2 pipe inserts high grade steel & GER & Ground water & St & PUR & SPF & 125 & 0，60 \\
\hline GSF Neuherberg & GER & Coldness & PEH & PUR & PEH & 100－250 & 0，80 \\
\hline Haag & AUT & Sewage & GFK & PUR & PEH & 25－100 & 2，90 \\
\hline High way tunnel Allach；SPF＝stainless steel & GER & Fire exting water & PEH & PUR & SPF & 80－200 & 6，30 \\
\hline High way tunnel Thuringia & GER & Fire exting water & Cast St． & PUR & PEH & 150 & 2，75 \\
\hline IBM Mainz；incl．pipe insert；SPF＝stainless st． & GER & Process water & St & PUR & SPF & 200 & 0，30 \\
\hline Invest Timisoara & RO & Bio－gas & St & PUR & SPF & 100 & 1，20 \\
\hline Local heat supply Straubing & GER & Thermal water & PEH & PUR & PEH & 50－200 & 2，48 \\
\hline Malt factory Erfurt & GER & Steam & St & MW & St & 200 & 1，00 \\
\hline Meat production Eberswalde；incl．Epoxy resin－c． & GER & Coldness & St & PUR & SPF & 20－125 & 0，62 \\
\hline Metalica Oradea & RO & Water & St & PUR & SPF & 200 & 0，50 \\
\hline Mineral water Staffelstein & GER & Brine water & PP & PUR & PEH & 40 & 0，30 \\
\hline New exhibition Friedrichshafen & GER & Potable water & PEH & PUR & PEH & 40－100 & 1，00 \\
\hline Northwest－Circle Zurich；MR＝SPF＋PEH & SUI & Sewage & Cast & PUR & SPF & 200 & 3，00 \\
\hline Orga Flintbek & GER & District cooling & PEH & PUR & PEH & 250－350 & 0，42 \\
\hline Philip Morris Kasachstan & KAZ & Oil & St & PUR & PEH & 200 & 3，20 \\
\hline Pipeline at Motorway 4 Bautzen & GER & District heating & St & MW & St & 400 & 2，50 \\
\hline Rennsteig－Tunnel Zella－Mehlis & GER & Fire exting water & Cast & PUR & PEH & 150 & 2，80 \\
\hline Reutlingen & GER & Cooling water & St & PUR & SPF & 100－250 & 0，41 \\
\hline RWE－Power plant Hürth & GER & Transportation & St & PUR & SPF & 200 & 0，70 \\
\hline Speed－course VW Wolfsburg；Dä＝PUR＋MW & GER & Heat \(180^{\circ}\) & St & MW & PEH & 65－80 & 0，30 \\
\hline Tar disposal Rositz & GER & Tar & St & PUR & SPF & 150 & 1，00 \\
\hline Tar－mud treatment Rositz & GER & Tar－mud & Es2 & PUR & St & 150 & 0，30 \\
\hline Telecommunication school Feldafing & GER & Heating & Es1 & PUR & PEH & 20－65 & 2，60 \\
\hline Wagon construction Görlitz & GER & District heating & St & MW & St & 250 & 1，00 \\
\hline Wesseling；incl．surface treatment & GER & Acid & St & PUR & ALF & 40－50 & 0，51 \\
\hline
\end{tabular}

IR＝Inside－resp．medium pipe
Dä＝Insulation material
MR＝Jacket－resp．outside－pipe
St＝Steel black，i．e．P235GH
Cuh＝Copper Pipe，hard R 290
Es1＝Stainless steel pipe，material 1.4301 （V2A）
Es2＝Stainless steel pipe，material 1.4571 （V4A）

GFK＝Reinforced fibre glass plastic
PEH＝Polyethylene High Density，PEHD
PP＝Polypropylene
MW＝Mineral－wool－fibre－shell
PUR＝Polyurethane－hard foam
SPF＝Galvanised Spiro－pipe
ALF＝Aluminium－fold－pipe

\section*{5 SHUT-OFF VALVES}

\subsection*{5.1 General}
5.1.1 Principle / Heat-Insulation / Jacket-Pipe ..... 5/1
5.2 Shut-Off Valve
5.2.1 Dimensions resp. Types - Single Pipe. ..... 5/2
5.2.2 Dimensions resp. Types - Double Pipe ..... \(5 / 3\)
5.3 Shut-Off Valve - Combi
5.3.1 Dimensions resp. Types - Single Pipe ..... \(5 / 4\)
5.4 Shut-Off Valve / Accessories
5.4.1 Protection Pipe / Spindle-prolongation / Operation Equipment. ..... \(5 / 5\)

\section*{5 SHUT-OFF VALVES}
5.1 General

\subsection*{5.1.1 Principle / Heat-Insulation / Jacket-Pipe}

\section*{Principle}
isoplus shut-off valves assembling will be made at open valve position and will be not permitted at the area of L-, Z- or U-elbows due to bending tension which will occur. After flushing of the line the first closing procedure can be carried out. Position in between should be avoided. Do not over wind the stop position. Using of inexpert prolongation is not permitted.

\section*{Heat-Insulation}

Shut-off valves will be insulated with Polyurethane-hard-foam (PUR) according to EN 253. Polyurethane-hard-foam consists of two components Polyol (component A, bright) and Isocyanat (component B, dark). isoplus is using generally PUR-foam which is \(100 \%\) free of chlorofluorocarbon (CFC). Cyclopentan is exclusively used as foaming agent. That means lowest possible ODPand GWP-value at extremest heat insulation quality. ODP (ozone-reducing potential) \(=0\), GWP (greenhouse potential) \(=<0,001\) !

\section*{Jacket-Pipe}

PEHD - Polyethylene High Density is a seamless extruded, shock- and break proof, viscoplastic hard polyethylene up to \(-50^{\circ} \mathrm{C}\). General quality requirements according to DIN 8075. Corona treated for optimum compound with PUR-hard-foam according to EN 253.

Dimensions and wall thickness must be at least in accordance with EN 253. Testing of the melting index (MFI Group) is carried out in accordance with DIN 53735 and ISO 1133. PEHD is a proven plastic that has been used successfully for many years in the plastic jacket pipe system.

PEHD is resistant against weather conditions and UV-rays in a high extent as well as practically against all chemical reactions which may develop in the soil.Therefore PE is declared in all national and international standards as the only suitable material for direct buried pipe-laying.
isoplus exclusively uses polyurethane materials equipped with light stabilizers. As required by EN 253, the polyurethane pipes are effectively protected against UV-rays by adding special, very fine carbon blacks with \(2.5 \pm 0.5\) percent by mass.

Due to the excellent welding properties of PEHD, the welding seams of the moulded parts have a high degree of safety and quality. PEHD bend segments are brought together with a mirror welding machine and butt welded. The fillet welds at branch connections are carried out with an extruder welding machine.

\footnotetext{
Accessories see chapter 5.4
Assembly information shut-off valves see chapter 10.2.5
Material specification jacket-pipe see chapter 2.1.4
Material specification PUR-hard-foam see chapter 7.1.7
}

\subsection*{5.2.1 Dimensions resp. Types - Single Pipe}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Dimensions Steel Pipe} & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{\[
\begin{gathered}
\text { Jacket-Pipe Outside- } \varnothing \\
\mathbf{D}_{\mathrm{a} 1} / \mathbf{D}_{\mathrm{a} 2} \\
\text { in } \mathrm{mm}
\end{gathered}
\]}} & \multicolumn{2}{|l|}{Dimensions Dome} & \multirow{4}{*}{Overalllength L in mm} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Nominal Diameter / Dimension in}} & \multirow[t]{3}{*}{\begin{tabular}{l}
Outside- \\
\(\varnothing\) \\
\(d_{a}\) \\
in mm
\end{tabular}} & \multirow[t]{3}{*}{Wallthickness s in mm} & & & & \multirow[t]{3}{*}{Jacket-Pipe-Outside-Ø \(D_{a 3}\) in mm} & \multirow[t]{3}{*}{Overall resp. axes height h in mm} & \\
\hline & & & & & lation Class & & & & \\
\hline DN & Inches & & & Standard & 1x reinforced & 2x reinforced & & & \\
\hline 25 & 1" & 33,7 & 3,2 & 90 / 110 & 110/110 & 125 / 125 & 110 & 480 & 1500 \\
\hline 32 & 11/4" & 42,4 & 3,2 & 110/125 & 125/125 & 140/140 & 110 & 485 & 1500 \\
\hline 40 & 11/2" & 48,3 & 3,2 & 110/125 & 125 / 125 & 140 / 140 & 110 & 495 & 1500 \\
\hline 50 & 2" & 60,3 & 3,2 & 125/140 & 140 / 140 & 160 / 160 & 110 & 500 & 1500 \\
\hline 65 & \(21 / 2^{\prime \prime}\) & 76,1 & 3,2 & 140 / 160 & 160 / 160 & 180/180 & 110 & 505 & 1500 \\
\hline 80 & 3" & 88,9 & 3,2 & 160/180 & 180/180 & 200/200 & 110 & 515 & 1500 \\
\hline 100 & 4" & 114,3 & 3,6 & 200/225 & 225 / 225 & \(250 / 250\) & 125 & 525 & 1500 \\
\hline 125 & 5 " & 139,7 & 3,6 & 225/250 & 250/250 & 280/280 & 140 & 545 & 1500 \\
\hline 150 & 6 " & 168,3 & 4,0 & 250/280 & 280/280 & 315 / 315 & 140 & 565 & 1500 \\
\hline 200 & 8" & 219,1 & 4,5 & \(315 / 355\) & 355/355 & 400/400 & 140 & 585 & 1500 \\
\hline 250 & 10" & 273,0 & 5,0 & 400 / 450 & 450/450 & \(500 / 500\) & 180 & 625 & 1500 \\
\hline 300 & 12" & 323,9 & 5,6 & 450 / 500 & 500/500 & \(560 / 560\) & 180 & 665 & 1800 \\
\hline
\end{tabular}

Carrier pipe at least acc. to EN 488, from wall thickness > 3,0 mm with weld seam preparation by \(30^{\circ}\) bevelled ends acc. to DIN EN ISO 9692-1. Length of bare steel pipe ends: \(220 \mathrm{~mm} \pm 10 \mathrm{~mm}\). ATTENTION: The mentioned construction measures are only valid for the standard product used by isoplus, other available type's resp. dimensions on request. In some available types of ball valves is a conical square cover included. Up to nominal diameter DN 125 the isoplus-spindle prolongation can be used, which can be operated with any standard T-key. Starting from DN 150 this accoutrement should preferable be used by a gear, spindle prolongation or other accessories from the ball valves producers. Orders should indicate exactly type and kind of operation, T-key or slip-on gear.
A T-key, a spindle prolongation or a slip-on gear can be put on this adapter. All standard types with reduced flow are also available in full bore. Fully bored fittings are available as special components. The \(h\) and \(L\) dimensions may differ slightly due to the fabrication. Slip-on protection pipe are available in various versions. slip-on protection pipes are not include in delivery range of shut-off valves and it's seperatly to order.

Accessories see chapter 5.4
Assembling information shut-off valve see chapter 10.2.5
Material specification jacket-pipe see chapter 2.1.4
Material specification PUR-hard-foam see chapter 7.1.7

\subsection*{5.2 Shut-Off Valve}

\subsection*{5.2.2 Dimensions resp. Types - Double Pipe}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Dimensions Steel Pipe} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Jacket-Pipe- } \varnothing \\
& \mathbf{D}_{\mathrm{a} 1} / \mathbf{D}_{\mathrm{a} 2} \\
& \text { in } \mathrm{mm}
\end{aligned}
\]}} & \multicolumn{4}{|c|}{Dimensions Dome} & \multirow[t]{4}{*}{\begin{tabular}{l}
Overalllength \\
L in mm
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Nominal
Diameter /
Dimension
in}} & \multirow[t]{3}{*}{\[
\begin{array}{|c}
\hline \text { Outside } \\
\varnothing \\
d_{\mathrm{a}} \\
\text { in } \mathrm{mm}
\end{array}
\]} & \multirow[t]{3}{*}{Wallthickn. s in mm} & & & \multirow[t]{3}{*}{Jacket-Pipe-Outside- \(\varnothing\) \(\mathrm{D}_{\mathrm{a} 3}\) in mm} & \multirow[t]{3}{*}{Overall resp. axes height h in mm} & \multirow[t]{3}{*}{Overall resp. axes height \(h_{1}\) in mm} & \multirow[t]{3}{*}{Axesdistance dome A in mm} & \\
\hline & & & & Insula & Class & & & & & \\
\hline DN & Inches & & & Standard & 1x reinforced & & & & & \\
\hline \(2 \cdot 25\) & 1" & 33,7 & 3,2 & 140 / 200 & 160 / 225 & 110 & 480 & 480 & 250 & 2200 \\
\hline \(2 \cdot 32\) & 11/4" & 42,4 & 3,2 & 160/225 & 180 / 250 & 110 & 485 & 485 & 250 & 2200 \\
\hline \(2 \cdot 40\) & 11/2" & 48,3 & 3,2 & 160/225 & 180 / 250 & 110 & 495 & 495 & 250 & 2200 \\
\hline \(2 \cdot 50\) & 2 " & 60,3 & 3,2 & 200/280 & 225 / 315 & 110 & 500 & 500 & 250 & 2200 \\
\hline \(2 \cdot 65\) & 21/2" & 76,1 & 3,2 & 225/315 & 250/355 & 110 & 505 & 505 & 250 & 2200 \\
\hline \(2 \cdot 80\) & \(3{ }^{\prime \prime}\) & 88,9 & 3,2 & 250/355 & 280 / 400 & 110 & 515 & 515 & 250 & 2200 \\
\hline \(2 \cdot 100\) & 4" & 114,3 & 3,6 & 315/450 & \(355 / 500\) & 140 & 525 & 525 & 250 & 2200 \\
\hline \(2 \cdot 125\) & 5 " & 139,7 & 3,6 & 400/560 & 450 / 560 & 140 & 545 & 545 & 300 & 2400 \\
\hline \(2 \cdot 150\) & 6 " & 168,3 & 4,0 & 450 / 630 & \(500 / 630\) & 140 & 565 & 565 & 300 & 2600 \\
\hline \(2 \cdot 200\) & 8" & 219,1 & 4,5 & \(560 / 800\) & 630 / 800 & 140 & 585 & 850 & 400 & 2800 \\
\hline
\end{tabular}

Carrier pipe at least acc. to EN 488, from wall thickness \(>3,0 \mathrm{~mm}\) with weld seam preparation by \(30^{\circ}\) bevelled ends acc. to DIN EN ISO 9692-1. Length of bare steel pipe ends: \(220 \mathrm{~mm} \pm 10 \mathrm{~mm}\). Clear pipe-distance \(\left(h_{S}\right)\) like pipe bars, see chapter 2.3.2.

ATTENTION: The mentioned construction measures are only valid for the standard product used by isoplus, other available type's resp. dimensions on request.
A \(1,50 \mathrm{~m}\) long PEHD slip-on protection pipe which can be shortened will be part of the delivered product as well as a conical square cover. A T-key, a spindle prolongation or a slip-on gear can be put on this adapter.
Starting from DN 150 this accoutrement should preferable be used by a gear.
Orders should indicate exactly type and kind of operation, T-key or slip-on gear. All standard types with reduced flow are also available in full bore. Fully bored fittings are available as special components. The h and L dimensions may differ slightly due to the fabrication.

\section*{Accessories see chapter 5.4}

Assembling information see chapter 10.2.5
Material specification jacket-pipe see chapter 2.1.4
Material specification PUR-hard foam see chapter 7.1.7

\subsection*{5.3.1 Dimensions resp. Types - Single Pipe}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Dimensions Nominal Passage} & \multicolumn{3}{|c|}{Drain / Vent} & \multirow[t]{5}{*}{\[
\begin{gathered}
\text { Dome- } \\
\varnothing \\
\\
\mathbf{D}_{\text {a3 }} \\
\text { in } \mathrm{mm}
\end{gathered}
\]} & \multirow[t]{5}{*}{Axesdistance ELE/ELÜ to dome A in mm} & \multirow[t]{5}{*}{\begin{tabular}{l}
Overalllength \\
L in mm
\end{tabular}} \\
\hline \multicolumn{3}{|c|}{Steel Pipe} & \multicolumn{3}{|r|}{\multirow[t]{2}{*}{\[
\begin{gathered}
\text { Jacket-Pipe-Outside- } \varnothing \\
\mathbf{D}_{\mathrm{a} 1} / \mathbf{D}_{\mathrm{a} 2} \\
\text { in } \mathrm{mm} \\
\hline
\end{gathered}
\]}} & \multirow[t]{4}{*}{\begin{tabular}{l}
Nom. Diam. \\
in DN
\end{tabular}} & \multirow[t]{4}{*}{```
    Jacket-
    Pipe-
Outside-\varnothing
    Da4
    in mm
```} & \multirow[t]{4}{*}{Overall resp. axes height h in mm} & & & \\
\hline Nominal Diameter & Outside- & Wallthickness & & & & & & & & & \\
\hline in & \(\mathrm{d}_{\mathrm{a}}\) & s & \multicolumn{3}{|c|}{Insulation Class} & & & & & & \\
\hline DN & in mm & in mm & Standard & 1x reinforced & 2x reinforced & & & & & & \\
\hline 25 & 33,7 & 3,2 & 90/110 & 110/110 & 125/125 & 25 & 110 & 480 & 110 & 300 & 2000 \\
\hline 32 & 42,4 & 3,2 & 110/125 & 125/125 & 140 / 140 & 25 & 110 & 485 & 110 & 300 & 2000 \\
\hline 40 & 48,3 & 3,2 & 110/125 & 125/125 & 140 / 140 & 25 & 110 & 495 & 110 & 300 & 2000 \\
\hline 50 & 60,3 & 3,2 & 125/140 & 140/140 & 160 / 160 & 25 & 110 & 500 & 110 & 300 & 2000 \\
\hline 65 & 76,1 & 3,2 & 140 / 160 & 160 / 160 & 180 / 180 & 25 & 110 & 505 & 110 & 300 & 2000 \\
\hline 80 & 88,9 & 3,2 & 160 / 180 & 180/180 & 200 / 200 & 50 & 125 & 515 & 110 & 300 & 2000 \\
\hline 100 & 114,3 & 3,6 & 200/225 & \(225 / 225\) & 250 / 250 & 50 & 125 & 525 & 140 & 350 & 2000 \\
\hline 125 & 139,7 & 3,6 & \(225 / 250\) & 250/250 & 280 / 280 & 50 & 125 & 545 & 140 & 350 & 2000 \\
\hline 150 & 168,3 & 3,6 & 250 / 280 & 280/280 & 315/315 & 50 & 125 & 565 & 140 & 350 & 2000 \\
\hline 200 & 219,1 & 4,0 & 315 / 355 & \(355 / 355\) & 400 / 400 & 50 & 125 & 585 & 140 & 500 & 2000 \\
\hline 250 & 273,0 & 4,5 & 400 / 450 & 450 / 450 & \(500 / 500\) & 50 & 125 & 625 & 160 & 500 & 2000 \\
\hline 300 & 323,9 & 5,0 & 450 / 500 & \(500 / 500\) & \(560 / 560\) & 50 & 125 & 665 & 180 & 500 & 2200 \\
\hline
\end{tabular}

Carrier pipe, execution and operating-dome like shut-off valves, chapter 5.2.1, however prefabricated as complete drain- or/and venting unit, which will be preferable installed in a manhole. An isoplus ball-valve with outside operating handle is factory-foamed in at the vertical exits for drain and/or vent, therefore they may not be shortened. The not insulated exit ends will be supplied with end caps and are produced generally with a galvanized pipe end with outside thread-connection. All standard types with reduced transition.

Available types as well as other dimensions on request. Valves with full bore as well as drain or/and vent with insulation class 1 x reinforced or 2 x reinforced available as special construction respectively as special manufactured product also on request, please check availability. Orders should clearly indicate kind of construction, type of accoutrement, operation (T-key or slip-on gear) as well as drain or/and vent.
Alternatively this shut-off valve combination will be available without foamed-in drain-/vent-ball valve. The \(\mathrm{h}, \mathrm{A}\) and L dimensions may differ slightly due to the fabrication.
5.4 Shut-Off Valve / Accessories

\subsection*{5.4.1 Protection Pipe / Spindle-prolongation / Operation Equipment}

\section*{PEHD-Slip-on protection pipe}

This standard protection pipe with a protection cap as well as inside fixed laminate as centring aid is part of the delivery range of a shut-off valve. The protection pipe will be delivered generally in a length of \(1,50 \mathrm{~m}\) and will be adjusted directly to the covering height at site.

Protecting pipes are mostly ending in a DIN-street-cap or a manhole. Depending from application and nominal diameter different types will be required. Dimensions and special types, i. e. with screw-cap-cover on request.

\section*{Spindle-prolongation}

In case that shut-off valves will be installed very deep, prolongation should be additionally used. A conical square-nut for putting on the standard dome, respectively a square cover will be part of the delivery range of a shut-off valve.

The prolongation will end again with a square-cover. Depending from dimension and manufacturer of shut-off valve different spindle-prolongation are available in standard length of \(0,50 \mathrm{~m}\), \(1,00 \mathrm{~m}\) or \(1,50 \mathrm{~m}\). Possible types on request.

\section*{T-Key / Slip-on gear}

Depending from dimension of the shut-off valve the operation will be made by use of a T-key. Starting from DN 150 a gear should respectively can be used.

The T-key will be delivered generally in a length of \(1,00 \mathrm{~m}\) with a conical square-nut. For operation of the shut-off valve inexpert prolongation of the lever arm is not permitted.

The gear has to put vertical on the shut-off valve. Depending from types of shut-off valves different types of gears are available which will eventually need additional accessories like slip-on flange.

Use of torque increasing units which are not corresponding with the type are not allowed. Available slip-on- and planet-gears as well as electrical-gears on request.
6.1 General
6.1.1 Explanation / Sleeves / Coupler Test Procedure. \(6 / 1\)
6.1.2 Survey Basic Material \& Properties. \(6 / 2\)
6.2 PEHD - Shrinkable Coupler
6.2.1 Delivery Range. 6 / 3
6.2.2 Description. \(6 / 3\)
6.3 isojoint \(X^{\oplus}\) - Shrinkable Coupler
6.3.1 Delivery Range. \(6 / 4\)
6.3.2 Description. \(6 / 4\)
6.4 isojoint III \({ }^{\oplus}\) - Shrinkable Coupler
6.4.1 Delivery Range. \(6 / 5\)
6.4.2 Description. \(6 / 5\)
6.5 Electro - Welding Coupler \({ }^{\odot}\)
6.5.1 Delivery Range. 6/6
6.5.2 Description. 6/6
6.6 isocompact - Coupler \({ }^{\oplus}\)
6.6.1 Delivery Range. \(6 / 7\)
6.6.2 Description. \(6 / 7\)
6.7 Spiro - Coupler
6.7.1 Delivery Range. \(6 / 8\)
6.7.2 Description. 6/8
6.8 Reduction - Shrinkable Coupler
6.8.1 Delivery Range. 6/9
6.8.2 Description. 6/9
6.9 Double Reduction - Shrinkable Coupler
6.9.1 Delivery Range. \(6 / 10\)
6.9.2 Description. \(6 / 10\)
6.10 Shrinkable End Coupler
6.10.1 Delivery Range. \(6 / 11\)
6.10.2 Description. \(6 / 11\)
6.11 Assembling Coupler / Assembling Parts
6.11.1 Delivery Range - Spud-Tapping-Branch. \(6 / 12\)
6.11.2 Description \(6 / 12\)

\title{
6 CONNECTION TECHNOLOGY JACKET-PIPE
}

\subsection*{6.1 General}

\subsection*{6.1.1 Explanation / Sleeves / Coupler Test Procedure}

\section*{Explanation}

There are several coupler constructions available for the different technical requirements. All PEHDconnection couplers are used in order to reach a non-positive safety, gas- and watertight jacket-pipe connection. The pipe layer will be responsible for slipping on the coupler before starting the welding works. All couplers consist of a PEHD-socket pipe with material properties as described in chapter 2.1.4. It will be generally possible to deliver all couplers in special length, i. e. for post-insulation of the welding seams of an uninsulated one-time-ball-valve, an one-time-compensator or a fitting piece. Insulation and sealing of all kind of couplers, except of isocompact \({ }^{\circledR}\), will be carried out generally by isoplus-works-educated assembling specialists, tested by AGFW- and BFW.

\section*{Sleeves}

The manual usable shrink-sleeves which are part of the different kind of couplers consist of a heat shrinkable, molecular cross-linked and modified polyolefin with a sealing adhesive system consisting of an elastic-viscous sealing area. This kind of sleeve is resistant against thermal ageing, weather conditions and chemical influence as well as UV-rays and alkaline-earth.

\section*{Coupler Test Procedure}

In co-operation with accepted test institutes, like i. e. FFI in Hanover (District Heating Research Institute e.V.) isoplus offers extensive analysis of PUR-local foam and sleeves respectively of complete couplers. The test procedures include all quality guidelines of EN 253 and EN 489 standard. Depending from requirements the quality control includes i. e.:
\(\Rightarrow\) Visual expertise of storage, quality and processing of the material
\(\Rightarrow\) Preparing of a test sample in a test box, for local used foam with expertise concerning starting time, rise- as well as foaming behaviour
\(\Rightarrow\) Taking out of a 30 mm drill-cone from the PUR-foam of a coupler followed by a visual check concerning colouring, homogeneity and cell-structure
\(\Rightarrow\) Testing of the foam sample in the laboratory concerning cell-structure, closed cells, foam density, pressure resistance and water absorption during boiling test

All taken samples will be recorded with the relevant parameters like date, time project andsection, constructing company and installer, weather conditions, temperature, dimension, kind of coupler and -number, local foam (mechanical or manual) and trench conditions, and transferred to the corresponding test institute. After writing of the certificate it will be given to the buyer for documentation. The content of the test procedure as well as the determination of the samples has to be decided by agreement between the purchasers or by an authorized third party and the couplerassembling company, respectively with isoplus. As executing company of the test procedure isoplus has to be informed concerning this decision. Parallel to this the procedure after completion of the test report has to be determined before starting of the quality test procedure. Please contact isoplus-quality-engineering specialists in case of additional questions.

\subsection*{6.1.2 Survey Basic Material \& Properties}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Coupler construction / -type} & \begin{tabular}{l}
PEHD \\
Shrinkable
\end{tabular} & isojoint \(\mathrm{X}^{\text {® }}\) Shrinkable & isojoint III® & ElectroWelding \({ }^{\text {® }}\) & isocompact \({ }^{\text {® }}\) & Spiro \\
\hline \multirow{5}{*}{} & Uncross-linked PEHD-pipe & \(\checkmark\) & - & - & \(\checkmark\) & - & - \\
\hline & Cross-linked PEHD-pipe & - & \(\checkmark\) & \(\checkmark\) & - & \(\checkmark\) & - \\
\hline & Heat shrinking & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - \\
\hline & Extruder weldable and to shorten & \(\checkmark\) & - & - & \(\checkmark\) & - & - \\
\hline & Steel-spiral-pipe (Spiro), separated & - & - & - & - & - & \(\checkmark\) \\
\hline \multirow{9}{*}{} & two shrinkable sleeves & \(\checkmark\) & - & - & - & - & - \\
\hline & two PE-weldable plugs & \(\checkmark\) & \(\checkmark\) & - & \(\checkmark\) & - & - \\
\hline & PE-hole-lockers & 2 & 2 & - & 2 & - & 1 \\
\hline & Butyl-rubber-sealing tape & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline & two single copper-heat conductors & - & - & - & \(\checkmark\) & - & - \\
\hline & Shrinking foil + sealing compound & - & - & \(\checkmark\) & - & \(\checkmark\) & alternative \\
\hline & Sealing sheet metal & - & - & - & - & - & \(\checkmark\) \\
\hline & Blind riveting & - & - & - & - & - & \(\checkmark\) \\
\hline & Silicon sealing & - & - & - & - & - & eventual \\
\hline \multirow[t]{2}{*}{} & Polyurethane-local foam (PUR) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & \(\checkmark\) \\
\hline & PUR-insulation shells & - & - & alternative & - & \(\checkmark\) & alternative \\
\hline \multirow{13}{*}{} &sealing & double & double & double & electric & double & single \\
\hline & Gas- and water tight & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - \\
\hline & Splash proof & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline & Air pressure test \(0,2 \mathrm{bar}\) & \(\checkmark\) & \(\checkmark\) & - & \(\checkmark\) & - & - \\
\hline & Test certificate acc. to & & & & & & \\
\hline & EN 489-100 Cycles & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - \\
\hline & DVS-guideline 2207-part 5 & - & - & - & \(\checkmark\) & - & - \\
\hline & suitable for: & & & & & & \\
\hline & Flexible Compound Systems - Single pipe & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & \(\checkmark\) & - \\
\hline & Rigid Compound Systems - Single pipe & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - \\
\hline & Rigid Compound Systems - Double pipe & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - \\
\hline & Steel-spiral-pipe (Spiro) - Jacket-pipe & - & - & - & - & - & \(\checkmark\) \\
\hline & Application & 2 & 2 & 3 & 3 & 1 & 4 \\
\hline
\end{tabular}

\footnotetext{
1 = suitable for all pipe net works with standard operating- and soil conditions
2 = suitable for all pipe net works with increased operating- and soil conditions, like ground- and pressing water
3 = like 2, however especially for big pipe sizes
\(4=\) suitable for all pipe net works layed inside of buildings or in the open
}

\section*{6 CONNECTION TECHNOLOGY JACKET-PIPE is plus}

\subsection*{6.2 PEHD - Shrinkable Coupler}

\subsection*{6.2.1 Delivery Range}

\subsection*{6.2.2 Description}

The uncross-linked, PE-weldable coupler is a double-sealing system which consists of a PEHD-socket-pipe in one piece with heat shrinkable properties, two shrink-sleeves for sealing of the coupler at the transitions to the jacket-pipe as well as of two PE-welding plugs and two PE-holelockers. During assembling the coupler will be shrinked down to the original diameter by use of soft gas-flame; the so called memory-effect. A sealing tape made of butyl-rubber will be placed between jacket- and socket-pipe before the first shrinking procedure, which will result in a first sealing.

The cross-linked shrinking joint will be subjected to an air pressure test of 0,2 bar before foaming and will be tested using an appropriate indicator liquid. After foaming the second sealing by use of shrink-sleeves will follow. The foam filling-in- and venting opening will be sealed by PE-plugs and additionally with PE-hole-lockers.

Application:

Diameter:
Delivery length:

Available as: Connecting coupler, long coupler, reduction coupler, Double-reduction coupler, end coupler
Suitable for all pipe-networks with high operating- and soil conditions, like ground- and pressing water. According to EN 489 in sand box sliding test approved with 100 cycles
from \(D_{a} \geq 65 \mathrm{~mm}\) up to maximum \(D_{a}=\mathbf{8 0 0} \mathbf{~ m m}\)
Standard \(=\mathbf{7 0 0} \mathbf{~ m m}\)

\subsection*{6.3.1 Delivery Range}

\subsection*{6.3.2 Description}

The cross-linked, self-sealing isojoint \(\mathbf{X}^{\circledR}\)-shrinkable coupler is a system consisting of an undivided PEHD pipe with heat-shrinking characteristics in addition to two polyurethane welding plugs. After extrusion, the joint body will be cross-linked. The radiation cross-linking gives technical plastics the mechanical, thermal, and chemical qualities of high-performance plastics.

Stretched while warm during production, the socket is shrunk back to its original diameter using a soft gas flame. This shape memory is also called the Memory Effect. Before the shrinking process, a sealing strip of butyl rubber is inserted between the casing pipe and the joint, so that a very high ring key strength is achieved due to the shrinking and the seal, which means that no additional collars are required.

The cross-linked shrinking joint will be subjected to an air pressure test of 0,2 bar before foaming and will be tested using an appropriate indicator liquid. After foaming, the foam filling and the ventilation openings will be sealed with polyethylene stoppers. In order to enable welding of the polyethylene plugs, the area of the welding plugs will not be cross-linked and therefore will be weldable.

Application: Suitable for all pipe-networks with high operating- and soil conditions, like ground- and pressing water. According to EN 489:2009 (D)

Diameter:
from \(\mathbf{D}_{\mathrm{a}} \geq \mathbf{9 0} \mathbf{~ m m}\) up to maximum \(\mathbf{D}_{\mathrm{a}}=\mathbf{5 6 0} \mathbf{~ m m}\)
Delivery length: \(\quad\) Standard \(=700 \mathrm{~mm}\)

\section*{6 CONNECTION TECHNOLOGY JACKET-PIPE \\ is plus}

\section*{6.4 isojoint III \({ }^{\circledR}\) - Shrinkable Coupler}

\subsection*{6.4.1 Delivery Range}

\subsection*{6.4.2 Description}

The two-fold sealed joint system, isojoint III \({ }^{\circledR \text {, }}\), consists of a PE-X casing joint, shrinkable along its entire length, a PE shrinking foil with mastic melt adhesive, and a special, semi-crystalline melt adhesive.

The basic material of the isojoint III \({ }^{\circledR}\) is a molecularly cross-linked carrier material made of modified PEHD. In combination with the polyethylene pre-insulation of the joint cavity, the PE-X shrinking foil and an exceptionally peel- and shear-resistant adhesive, a high-quality, economically processable and permanently sealed joint system is created.

Bored holes, foam holes and ventilation holes are no longer required since the joint cavity in the isojoint III \({ }^{\circledR}\) joint system is foamed before sealing the joint using polyethylene foam and a foam mold. This enables to non-destructively test the flawless quality of the foam.

Application: Suitable for all pipe-networks with high operating- and soil conditions, like ground- and pressing water. According to EN 489:2009 (D)

Available as: Connecting coupler
Diameter: \(\quad\) from \(D_{a} \geq \mathbf{3 1 5} \mathbf{~ m m}\) up to maximum \(D_{a}=\mathbf{1 4 0 0} \mathbf{m m}\)
Delivery length: \(\quad\) Standard \(=\mathbf{7 3 0} \mathbf{~ m m}\)

6 CONNECTION TECHNOLOGY JACKET-PIPE
6.5 Electro - Welding Coupler®

\subsection*{6.5.1 Delivery Range}

\subsection*{6.5.2 Description}

The patented electro-welding coupler \({ }^{\circledR}\) without axial-welding seam consists of a closed, uncrosslinked, PE-weldable shrinkable coupler, two loose copper-heat conducting wires which will be put in shortly before assembling as well as of two PE-welding plugs each with PE-hole lockers. The separated delivery of heat conductor and coupler will guarantee a maximum of cleanness as well as an ideal overcoming of measure tolerances and ovality at the jacket-pipe ends. By using a microprocessor controlled welding transformer for a \(400 \mathrm{~V} / 15\) A three-phase- respectively power current connection the electrical welding procedure will run off self controlling and fully automatically. Starting with the heating up period the transformer is determining the procedure under considering all other secondary conditions.

The Electro-welding coupler \({ }^{\ominus}\) can be tested before foaming by air-pressure of 0,2 bar and soaped in. The results as well as the data of the welding procedure have to be recorded. After foaming the foam filling-in- and venting opening will be sealed by PE-plugs and additionally with PE-hole lockers.

Application: Suitable for all pipe-networks with high operating- and soil conditions, like ground- and pressing water, especially in case of bigger pipe dimensions. According to EN 489 in sand box sliding test approved with 100 cycles, PE-welding wire acc. to DVS-guideline 2207 - part 5, approved with timefracure test

Available as: Connecting coupler and long coupler
Diameter: \(\quad\) from \(D_{a} \geq 90 \mathrm{~mm}\) up to maximum \(D_{a}=\mathbf{8 0 0} \mathbf{~ m m}\)
Delivery length: \(\quad\) Standard \(=\mathbf{7 0 0} \mathbf{~ m m}\), and in 100 mm steps up to maximal 1500 mm

\title{
6 CONNECTION TECHNOLOGY JACKET-PIPE is plus
}
6.6 isocompact \(^{\circledR}\) - Coupler

\subsection*{6.6.1 Delivery Range}

\subsection*{6.6.2 Description}

With the isocompact \({ }^{\circledR}\)-coupler the pipe layer can carry out the post insulation independently at the connection spots of isoplus-pipes, except of double pipe-systems. It consists of a two-parted PUR-insulation-shell, a shrink-foil coated with sealing compound, the corresponding quantity of sealing tape as well as of a closed, totally cross-linked, not weldable shrinkable coupler. For the shrinking foil and -coupler PE with heat shrinkable properties will be used, both will be shrinked during assembling by use of a soft gas-flame.

Between shrinking foil and socket-pipe the sealing adhesive will be placed after the first shrinkprocedure, in order to reach a high circular conclusive strength during and after the shrink procedure. The coupler length of 780 mm will guarantee an insulation of maximum 220 mm long steel pipe ends respectively a maximum length of 440 mm not insulated area. isocompact \({ }^{\circledR}\)-coupler is not available as reducing- or end coupler.

Application: Suitable for all pipe-networks with normal operating- and soil conditions. According to EN 489 in sand box sliding test approved with 1000 cycles

Available as: Connecting coupler
Diameter:
Delivery length:
from \(D_{a} \geq 65 \mathrm{~mm}\) up to maximum \(\mathrm{D}_{\mathrm{a}}=\mathbf{5 6 0} \mathbf{~ m m}\)
Standard \(=\mathbf{7 8 0} \mathbf{~ m m}\) (Long coupler not possible)

6 CONNECTION TECHNOLOGY JACKET-PIPE

\subsection*{6.7.1 Delivery Range}

\subsection*{6.7.2 Description}

Spiro-couplers are used for actuated jacket-pipe connections for industrial, open line constructions or building lines. Inner folded spiro-jacket or outside folded spiro-jacket can be concerned. The delivery range includes a longitudinal separated jacket-pipe husk and a sealing sheet metal for closing the foam opening.

Depending from jacket-pipe diameter the corresponding quantity of blind resp. machine rivets for fixing of the longitudinal seam and the sealing sheet metal, as well as a sealing tape made of Butylrubber which will be placed at the radial material overlappings, are belonging additionally to the delivery range of a coupler. On request all material edges may be covered additionally by a silicon layer after foaming.

Application: Suitable for all open line or pipe-networks inside of buildings with standard operating conditions

Avialable as:
Connecting coupler and long coupler
Diameter:
Delivery length:
from \(D_{a} \geq 65 \mathbf{m m}\) up to maximum \(D_{a}=1200 \mathrm{~mm}\)
Standard \(=\mathbf{7 0 0} \mathrm{mm}\)

\section*{6 CONNECTION TECHNOLOGY JACKET-PIPE is plus}

\subsection*{6.8 Reduction - Shrinkable Coupler}

\subsection*{6.8.1 Delivery Range}

\subsection*{6.8.2 Description}

Reduction-shrinkable couplers will be used at the spot where a medium pipe will be reduced, as transition of different jacket-pipe diameter. The corresponding reducing ring is in the middle of the socket-pipe. Reducing of the carrier pipe is part of the work executed by the pipe line constructing company.

In order to avoid not permitted high frontal soil pressure loads in case of hot-operating and buried PE-jacket-pipes, reducing should be made only about maximum two dimensions. At the bonding area of a thermal pre-stressed line only one dimension step will be admissible.

The coupler has to be generally padded at the reducing ring in circumference direction. Expansion pad is not part of the delivery range of a reduction coupler.

Application: Analog chapter 6.2
Available as: Uncross-linked PEHD-Shrinkable Coupler
Diameter:
Delivery length:
Standard \(=\mathbf{1 0 0 0} \mathbf{~ m m}, 1400\) or 1500 mm
Kind of Delivery: centrical

\subsection*{6.9 Double Reduction - Shrinkable Coupler}

\subsection*{6.9.1 Delivery Range}

\subsection*{6.9.2 Description}

Double reduction-shrinkable couplers are used for post insulation of not insulated components with an outside diameter which is bigger than the carrier pipe. The coupler will be enlarged in the middle with two reducing rings. Due to this the required insulation thickness will be guaranteed in case of special components, i. e. one-time compensators. Parallel the metallic contact (short circuit) of the leak detecting wires with the mounting part will be avoided.

In order to avoid not permitted high frontal soil pressure loads in case of hot-operating and buried PE-jacket-pipes, reducing should be made only about maximum two dimensions. At the bonding area of a thermal pre-stressed line only one dimension step will be admissible. The coupler has to be padded at the reducing rings in circumference direction. Expansion pad is not part of the delivery range of a double-reduction coupler. In case of one-time compensators the expansion pad is not necessary, because one-time compensators will be generally within the bonding area of a line.

Application:
Analog chapter 6.2
Available as:
Uncross-linked PEHD-Shrinkable Coupler
Diameter:
from \(D_{a} \geq \mathbf{7 5} \mathbf{~ m m}\) up to maximum \(D_{a}=\mathbf{8 0 0} \mathbf{~ m m}\)
Delivery length: \(\quad\) Standard \(=\mathbf{1 0 0 0} \mathbf{~ m m}\)
Kind of Delivery: centrical

\title{
6 CONNECTION TECHNOLOGY JACKET-PIPE \\ is \(\bigcirc\) plus
}

\subsection*{6.10 Shrinkable End Coupler}

\subsection*{6.10.1 Delivery Range}

\subsection*{6.10.2 Description}

Shrinkable end couplers are used for temporary closing of blind ending pipes. Therefore the coupler end is closed with a blind cover. The carrier pipe end has to be closed tight before foaming, with a torospherical head, a pipe cap or similar. The pipe caps respectively torospherical heads are part of the performance of the pipe construction company.

In order to avoid high frontal not permitted axial expansion movements in case of hot-operating and buried PE-jacket-pipes, the blind cover generally has to be padded. The expansion pad is not part of the delivery range of an end-coupler.

Only one shrinking-sleeve is part of the delivery range of a shrinkable coupler.
Application: Analog chapter 6.2
Available as: Uncross-linked PEHD-Shrinkable Coupler
Diameter: from \(\mathrm{D}_{\mathrm{a}} \geq \mathbf{6 5} \mathbf{m m}\) up to maximum \(\mathrm{D}_{\mathrm{a}}=\mathbf{8 0 0} \mathrm{mm}\)
Delivery length: \(\quad\) Standard \(=\mathbf{7 0 0} \mathbf{~ m m}\)
Kind of delivery: Plug-execution

\section*{Assembly parts should GENERALLY BE AVOIDED FOR QUALITY AND WARRANTY REASONS!}

Assembling components should be generally used ONLY EXCEPTIONALLY (!!!) i. e. spud-tapping-branch. Production will be made ONLY AFTER WRITTEN REQUEST of the purchaser.

Assembly joints/assembly fittings do NOT meet the requirements and regulations of EN 253!

\subsection*{6.11.1 Delivery Range - Spud-Tapping-Branch}

\subsection*{6.11.2 Description}

If connections to buildings are subsequently required, in very exceptional cases branch fittings may be used. This requires making a carrier pipe branch, by tapping. The PEHD branch is split apart in the axial direction, folded over the carrier pipe and then welded using the PEHD extruder process. Branch fittings with a diameter of \(\geq 280 \mathrm{~mm}\) should be avoided.

A special coupling is included with an outlet nozzle. The main pipe consists of a long shrunk-on coupling similar to chapter 6.2.1, where the outlet nozzle of not shrinkable PEHD casing pipe is welded in at the factory. The shrinkable PEHD elbow, reduced on one side, is mounted on this piece.

The diameter of the outlet nozzle and the installation elbow depends on the tapping procedure used. To ensure the necessary insulation thickness is maintained, it may be necessary for the assembly elbows to be supplied in a diameter that is several times greater. It is therefore imperative that isoplus is notified prior to tapping, with a scale drawing giving the following details:

Tapping procedure or system, nominal inlet and outlet diameter, inlet and outlet casing pipe diameter, type of outlet, axis height and spacing of carrier pipe, inlet to outlet, outlet form (\(45^{\circ}\), parallel or \(90^{\circ}\) vertical tiers), non-insulated or peeled length (max. 400 mm) and outlet (max. 250 mm).

Without these parameters, PEHD branch fittings will not be delivered or made!
7.1 Rigid and Flexible Compound Systems
7.1.1 One-Time-Compensator 7/1-2
7.1.2 Tapping-Branch 7/3-4
7.1.3 One-Time-Ball-Valve. \(7 / 5\)
7.1.4 End Cap. \(7 / 6\)
7.1.5 Wall Duct. 7/7
7.1.6 Expansion Pads. 7/8-9
7.1.7 PUR-Foam. \(7 / 10\)
7.1.8 Joining Pipe / Assembling Supports / Warning Tape. \(7 / 11\)
7.2 Special Accessories Flexible Compound Systems
7.2.1 Press Tool / Bending Tool. 7 / 12
7.2.2 Protection Cap / Distributing Manhole. \(7 / 13\)
7.2.3 Twin-Accoutrement \(7 / 14\)

\section*{7 ACCESSORIES}

\subsection*{7.1 Rigid and Flexible Compound Systems}

\subsection*{7.1.1 One-Time-Compensator}

EKO (One-time-compensator) - system will be used for thermal pre-stressing of isoplus-pipelines in case of already refilled pipe-trenches. The distances of the pipelines between the one-timecompensators have to be filled, only the required assembling hollow at the EKO will remain open. Normally the thermal pre-stressing will be carried out by using the operating medium, however mobile heating units may be used as well.

EKO is a component which will be welded into the PJP-pipeline. During the heating period alterations of the pipe length will occur, which will be reliably compensated by this system. Due to the welding of the EKO-guiding pipes, the prestressing of the pipeline will be fixed after the expansion compensation will be completed.

One-time-compensators will be used in case where the maximum pipe laying length [\(\mathrm{L}_{\max }\)] cannot be kept or/and natural expansion elements will be not possible due to lack of space. However a natural expansion side-leg (L-, Z- or U-elbow) should be provided at the beginning and at the end of an EKOsection, respectively an anchor may be provided at one side.

At the beginning or at the end of a section one-time-compensators cannot be used instead of L-, Z- or U-elbows for compensation of expansion. In order to reach the pre-stressing respectively the limitation of the axial tension at refilled pipe trenches, the EKO should be at the detention area. In case of trench sections smaller than the maximum permitted pipe-laying length an one-timecompensator will be ineffective. In case of designed mixed systems, i. e. EKO \(\Rightarrow\) cold-laying can pipe-statically not determined.

Delivery length \(\left[\mathrm{L}_{\mathrm{L}}\right]\) has to be shortened before installation of EKO's about the mechanical prestressing measure \(\left[\mathrm{V}_{\mathrm{m}}\right.\)] In that way the real expansion expected from the pipeline \(\left[\mathrm{u}_{\mathrm{t}}\right]\) will be adjusted. For that the EKO has to be pressed together mechanical by use of a suitable gripping tool. On request EKO's can be pre-stressed in the factory, starting from dimension DN 350 this will be made generally due to the high strengths.

Material: Bellow/inside pipe made of chromium-nickel-steel, material-No. 1.4541; welding ends, outside pipe and the like made of P235GH, material-No. 1.0345; delivery incl. inside-hexagon-screw with sealing; nominal pressure PN 25.

\begin{tabular}{ll}
\(\mathbf{d}_{\mathbf{a}}=\) & Steel pipe outside diameter PJP \\
\(\mathbf{s}\) & \(=\) Wall thickness welding end EKO \\
\(\mathbf{d}_{\mathbf{a}}{ }^{\prime}=\) & EKO-outside diameter \\
\(\mathbf{D}_{\mathbf{a}}=\) & Minimum-coupling diameter at EKO \\
\(\mathbf{s}_{\mathbf{D}}=\) & Insulation thickness at EKO \\
\(\mathbf{M}_{\mathbf{D}}=\) Minimum length connecting coupler \\
\(\mathbf{L}_{\mathbf{L}}=\) Delivery length EKO
\end{tabular}
\(\mathbf{u}_{\mathbf{m}}=\) maximum expansion compens.
s = Wall thickness welding end EKO
\(\mathbf{d}_{\mathbf{a}}{ }^{\mathbf{d}}=\) EKO-outside diameter
\(\mathbf{D}_{\mathbf{a}}=\) Minimum-coupling diameter at EKO
\(\mathbf{s}_{\mathrm{D}}=\) Insulation thickness at EKO
\(\mathbf{L}_{\mathrm{L}}=\) Delivery length EKO
\(\mathbf{F}^{m}=\) Spring rate axial
A = effective bellow cross-section G \(=\) Weight EKO
\(\mathbf{u}_{\mathbf{t}}=\) actual expansion compensation
\(\mathbf{V}_{\mathrm{m}}=\) mechanical pre-stressing meas.
\(\mathbf{E}_{\mathrm{L}}=\) Installation length EKO
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{DIMENSIONS - TYPETC-PN 25} \\
\hline DN & Type & \[
\begin{gathered}
\mathbf{d}_{\mathbf{a}} \\
{[\mathrm{mm}]}
\end{gathered}
\] & \[
\underset{[\mathrm{mm}]}{\mathbf{s}}
\] & \[
\begin{gathered}
\mathbf{d}_{\mathbf{a}}^{\prime} \\
{[\mathrm{mm}]}
\end{gathered}
\] & \[
\begin{gathered}
\mathbf{D a}_{\mathbf{a}} \\
{[\mathrm{mm}]}
\end{gathered}
\] & \[
\begin{gathered}
\mathbf{S m}_{\mathbf{p}} \\
{[\mathrm{mm}]}
\end{gathered}
\] & \[
\begin{gathered}
\mathbf{M} \\
{[\mathrm{mm}]}
\end{gathered}
\] & \[
\begin{gathered}
\mathbf{L}_{\mathrm{L}} \\
{[\mathrm{~mm}]}
\end{gathered}
\] & \[
\begin{gathered}
\mathbf{u}_{\mathbf{m}} \\
{[\mathrm{mm}]}
\end{gathered}
\] & \[
\left|\begin{array}{c}
\mathbf{F} \\
{[\mathrm{N} / \mathrm{mm}]}
\end{array}\right|
\] & \[
\underset{\left[\mathrm{cm}^{2}\right]}{\mathbf{A}}
\] & \[
\begin{gathered}
\text { G } \\
{[\mathrm{kg}]}
\end{gathered}
\] \\
\hline 20 & EKO-25/25/50 (*) & 26,9 & 3,2 & 56,0 & 125 & 34,5 & 1000 & 275 & 50 & 176 & 9,7 & 1,3 \\
\hline 25 & EKO-25/25/50 & 33,7 & 3,2 & 56,0 & 125 & 34,5 & 1000 & 275 & 50 & 176 & 9,7 & 1,3 \\
\hline 32 & EKO-25/32/50 & 42,4 & 2,6 & 73,0 & 140 & 33,5 & 1000 & 275 & 50 & 204 & 15,1 & 1,7 \\
\hline 40 & EKO-25/40/50 & 48,3 & 2,6 & 73,0 & 140 & 33,5 & 1000 & 275 & 50 & 177 & 16,3 & 1,8 \\
\hline 50 & EKO-25/50/50 & 60,3 & 2,9 & 86,0 & 160 & 37,0 & 1000 & 275 & 50 & 224 & 25,9 & 2,4 \\
\hline 65 & EKO-25/65/70 & 76,1 & 2,9 & 106,0 & 180 & 37,0 & 1000 & 335 & 70 & 219 & 42,1 & 3,8 \\
\hline 80 & EKO-25/80/70 & 88,9 & 3,2 & 122,0 & 180 & 29,0 & 1000 & 345 & 70 & 180 & 67,8 & 5,5 \\
\hline 100 & EKO-25/100/80 & 114,3 & 3,6 & 139,7 & 225 & 42,6 & 1200 & 390 & 80 & 212 & 109,9 & 9,8 \\
\hline 125 & EKO-25/125/80 & 139,7 & 3,6 & 168,3 & 250 & 40,8 & 1200 & 400 & 80 & 226 & 159,9 & 12,5 \\
\hline 150 & EKO-25/150/100 & 168,3 & 4,0 & 193,7 & 280 & 43,1 & 1200 & 475 & 100 & 261 & 230,5 & 14,5 \\
\hline 200 & EKO-25/200/120 & 219,1 & 4,5 & 268,0 & 355 & 43,5 & 1200 & 515 & 120 & 361 & 383,9 & 27,5 \\
\hline 250 & EKO-25/250/120 & 273,0 & 5,0 & 323,9 & 400 & 38,0 & 1200 & 515 & 120 & 362 & 594,0 & 35,0 \\
\hline 300 & EKO-25/300/140 & 323,9 & 5,6 & 355,6 & 450 & 47,2 & 1400 & 660 & 140 & 353 & 834,2 & 57,5 \\
\hline 350 & EKO-25/350/140 & 355,6 & 5,6 & 406,4 & 500 & 46,8 & 1400 & 650 & 140 & 617 & 1004,3 & 60,0 \\
\hline 400 & EKO-25/400/140 & 406,4 & 6,3 & 457,2 & 560 & 51,4 & 1400 & 650 & 140 & 505 & 1310,0 & 75,5 \\
\hline 450 & EKO-25/450/150 & 457,2 & 6,3 & 508,0 & 630 & 61,0 & 1400 & 660 & 150 & 528 & 1656,1 & 86,0 \\
\hline 500 & EKO-25/500/150 & 508,0 & 6,3 & 560,0 & 670 & 55,0 & 1400 & 660 & 150 & 537 & 2042,8 & 93,0 \\
\hline 600 & EKO-25/600/150 & 610,0 & 7,1 & 675,0 & 800 & 62,5 & 1500 & 690 & 150 & 864 & 2937,8 & 162,0 \\
\hline
\end{tabular}
\({ }^{(*)}\)) pipe reducing from DN 25 to DN 20 has to be carried out at site.
Other dimensions and types on request.

\section*{7 ACCESSORIES}

\subsection*{7.1 Rigid and Flexible Compound Systems}

\subsection*{7.1.2 Tapping-Branch}

A tapping-branch will be used to produce a pipe-branch at a isoplus-pipeline which is in operation. Preparation as well as execution of the tapping according to AGFW-guideline FW 432. Between nominal main- and branch size at least two dimension differences have to be kept, according to AGFW FW 401.

Due to the tapping procedure considerable expenses will be saved by simple, economical working steps, as well as by fast and safe assembling without operating interruptions. Temperature and pressure should be reduced before assembling.

Tapping-Branch - ASP - Type T
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline DN & \begin{tabular}{c}
\(\mathbf{d}_{\mathbf{a}}\) \\
{\([\mathbf{m m}]\)}
\end{tabular} & \begin{tabular}{c}
\(\mathbf{H}\) \\
{\([\mathrm{mm}]\)}
\end{tabular} & \begin{tabular}{c}
\(\mathbf{d}_{\mathbf{i}}\) \\
{\([\mathrm{mm}]\)}
\end{tabular} & \begin{tabular}{c}
\(\mathbf{l}\) \\
{\([\mathrm{mm}]\)}
\end{tabular} & \begin{tabular}{c}
\(\mathbf{L}\) \\
{\([\mathrm{mm}]\)}
\end{tabular} & \begin{tabular}{c}
\(\mathbf{D}_{\mathbf{a}}\) \\
{\([\mathrm{mm}]\)}
\end{tabular} \\
\hline \(\mathbf{2 0 / 2 5}\) & \(26,9 / 33,7\) & 68 & 27,3 & 47 & 130 & 125 \\
\hline \(\mathbf{3 2}\) & 42,4 & 76 & 36,0 & 47 & 130 & 125 \\
\hline \(\mathbf{4 0}\) & 48,3 & 78 & 39,0 & 47 & 130 & 140 \\
\(\mathbf{5 0}\) & 60,3 & 88 & 46,0 & 52 & 135 & 140 \\
\(\mathbf{6 5}\) & 76,1 & 105 & 60,0 & 55 & 145 & 160 \\
\(\mathbf{8 0}\) & 88,9 & 117 & 71,0 & 63 & 155 & 200 \\
\hline \(\mathbf{1 0 0}\) & 114,3 & 148 & 100,0 & 73 & 175 & 250 \\
\hline \(\mathbf{1 2 5}\) & 139,7 & 260 & 121,0 & 90 & 204 & 315 \\
\hline \(\mathbf{1 5 0}\) & 168,3 & 292 & 140,0 & 105 & 243 & 355 \\
\(\mathbf{2 0 0}\) & 219,1 & 386 & 182,0 & 120 & 287 & 450 \\
\hline
\end{tabular}

Material: S355J2G4 (tai AISI 316), sealing made of EPDM, delivery incl. lock-disc. For assembling of tapping locks DN 125 to DN 200 a 24 h tapping service will be available on request. They will carry out even tappings at bigger pipes up to DN 400, after corresponding inspection.

For branches up to maximum DN 100 a safety-tapping-lock-unit will be available as accessory.
The complete delivery includes all adapters of the tapping branches DN 25 to DN 100, hole saws made of thin-walled Bi-metal of these nominal sizes, a 475 mm long tapping-spindle, centralizationdrill made of hard-metal with catch device, all required keys, handle for lock-discs and gear-unit.

\subsection*{7.1 Rigid and Flexible Compound Systems}

Tapping-Branches - AKH - Type J

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline DN & \begin{tabular}{c}
\(\mathbf{d}_{\mathbf{a 1}}\) \\
{\([\mathrm{mm}]\)}
\end{tabular} & \begin{tabular}{c}
\(\mathbf{s}_{\mathbf{1}}\) \\
{\([\mathrm{mm}]\)}
\end{tabular} & \begin{tabular}{c}
\(\mathbf{d}_{\mathbf{a} 2}\) \\
{\([\mathrm{~mm}]\)}
\end{tabular} & \begin{tabular}{c}
\(\mathbf{s}_{\mathbf{2}}\) \\
{\([\mathrm{mm}]\)}
\end{tabular} & \begin{tabular}{c}
\(\mathbf{H}\) \\
{\([\mathrm{mm}]\)}
\end{tabular} & \begin{tabular}{c}
\(\mathbf{d}_{\mathbf{a 3}}\) \\
{\([\mathrm{mm}]\)}
\end{tabular} & \begin{tabular}{c}
\(\mathbf{L}\) \\
{\([\mathrm{mm}]\)}
\end{tabular} & \begin{tabular}{c}
\(\mathbf{D}_{\mathbf{a}}\) \\
{\([\mathrm{mm}]\)}
\end{tabular} \\
\hline \(\mathbf{2 0}\) & 24,0 & 2,6 & 24,0 & 3,9 & 34 & 42,4 & 125 & 125 \\
\(\mathbf{2 5}\) & 33,7 & 2,9 & 37,0 & 5,8 & 46 & 60,3 & 145 & 140 \\
\(\mathbf{3 2}\) & 42,4 & 2,9 & 37,0 & 5,8 & 46 & 60,3 & 145 & 140 \\
\(\mathbf{4 0}\) & 48,3 & 2,9 & 54,0 & 6,7 & 57 & 88,9 & 200 & 160 \\
\(\mathbf{5 0}\) & 60,3 & 3,2 & 54,0 & 6,7 & 57 & 88,9 & 200 & 160 \\
\(\mathbf{6 5}\) & 76,1 & 3,2 & 63,0 & 7,0 & 70 & 114,3 & 260 & 180 \\
\hline \(\mathbf{8 0}\) & 88,9 & 3,2 & 82,0 & 8,0 & 80 & 133,0 & 265 & 225 \\
\(\mathbf{1 0 0}\) & 114,3 & 3,6 & 100,0 & 9,0 & 90 & 159,0 & 275 & 280 \\
\hline
\end{tabular}

Material: Casing and welding ends made of P235, adjusted ring and sealing made of PTFE, ball and gear-shaft made of high grade steel. The operation of DN 20 is carried out with a screwdriver, DN 25 to DN 50 with a hexagon socket wrench 10 mm and 14 mm beyond.

The tapping procedure occurs in this system by a user supplied device.

\section*{7 ACCESSORIES}

\subsection*{7.1 Rigid and Flexible Compound Systems}

\subsection*{7.1.3 One-Time-Ball-Valve}

One-time- respectively connection ball valves will be used for the end of a construction-section, which will be continued later on. As the end-piece will be welded at the pipe end, the existing isoplus-pipeline may be continued at any time, without draining the pipes and without interruption of pipeline operation.

One-time-ball-valves will be welded in closed position into the pipeline, like a piece of pipe. In case of double pipes it has to be considered that the assembling of the ball valves should be made clockwise and longitudinal transposed.

For protection reasons and in order to avoid that PUR-foam will enter into the open end of the ball valve, the assembling of a torospherical head respectively a pipe cap acc. to DIN EN 10253-2 will be prescribed. Post insulation will be carried out by use of an end-coupler.

One-Time-Ball-Valves - Maximum dimensions of available types
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\mathbf{D N}\) & \multirow{2}{*}{\begin{tabular}{c}
\(\mathbf{d}_{\mathbf{a}}\) \\
{\([\mathrm{mm}]\)}
\end{tabular}} & \begin{tabular}{c}
\(\mathbf{H}\) \\
{\([\mathrm{mm}]\)}
\end{tabular} & \begin{tabular}{c}
\(\mathbf{h}\) \\
{\([\mathrm{mm}]\)}
\end{tabular} & \begin{tabular}{c}
\(\mathbf{L}\) \\
{\([\mathrm{mm}]\)}
\end{tabular} & \multicolumn{2}{|c|}{\begin{tabular}{c}
Single pipe \\
{\([\mathrm{mm}]\)}
\end{tabular}} \\
\hline \(\mathbf{2 0}\) & 26,9 & 57,2 & 36,0 & 230 & 110 & 140 \\
\hline \(\mathbf{2 5}\) & 33,7 & 75,2 & 45,0 & 235 & 125 & 180 \\
\hline \(\mathbf{3 2}\) & 42,4 & 91,5 & 56,5 & 260 & 140 & 200 \\
\(\mathbf{4 0}\) & 48,3 & 100,1 & 62,0 & 260 & 160 & 225 \\
\hline \(\mathbf{5 0}\) & 60,3 & 121,0 & 76,5 & 300 & 180 & 280 \\
\(\mathbf{6 5}\) & 76,1 & 144,7 & 87,5 & 360 & 200 & 315 \\
\hline \(\mathbf{8 0}\) & 88,9 & 171,4 & 101,5 & 370 & 225 & 355 \\
\(\mathbf{1 0 0}\) & 114,3 & 210,9 & 122,0 & 390 & 280 & 450 \\
\(\mathbf{1 2 5}\) & 139,7 & 236,9 & 140,0 & 325 & 315 & 500 \\
\(\mathbf{1 5 0}\) & 168,3 & 269,6 & 160,0 & 350 & 355 & 560 \\
\(\mathbf{2 0 0}\) & 219,1 & 321,5 & 185,0 & 390 & 400 & 670 \\
\hline
\end{tabular}

Material: Casing and welding ends made of P235, adjusted ring and sealing made of PTFE, ball and gear-shaft made of high grade steel.
If the continuing section will be installed, assembled and welded on to the one-time-ball-valve, the line will be put in operation. For that the locking-screw of the one-time-ball-valve will be moved by use of a screw driver respectively an inside-hexagon-key and will be welded afterwards. The post insulation ensues with a double reducing joint.

\subsection*{7.1 Rigid and Flexible Compound Systems}

\subsection*{7.1.4 End Cap}

\section*{Simplex-End Cap}

\section*{Duplex-End Cap}

Zipper-End Cap

End caps are suitable for gable-end protection against water in order to avoid moisture penetration into the PUR-foam at the pipe ends, in buildings or constructions. Inside of manholes the end caps have to be secured against flooding with heating water.

Additionally end caps will protect against diffusion of PUR-foam-cell-gas which will occur at the open pipe ends. According to the result of long term investigations, cell-gas diffusions at not protected pipe ends respectively gable-ends, will influence the life time of PEHD jacket-pipes in a negative way. Therefore installation of pipe ends without end cap will be generally not permitted.

The pipe-layer will be responsible for putting on the end caps before connection to the continuing conventional pipe lines, inside of the building. End caps may be not cut open and have to be protected against heat and burnings in case of welding works. In order to guarantee a correct shrinking of the end caps, a minimum overlapping distance of the PEHD-jacket-pipe has to be considered inside of the building.

In case of medium temperatures \(>120^{\circ} \mathrm{C}\) end caps have to be fixed additionally at carrier pipe and jacket pipe by use of anti corrosion gripping tapes. End caps are available in all carrier-/jacket-pipe combinations. For double pipes so called Duplex-end caps are available and zipper-end caps for already welded pipes. If Simplex end caps are used for isoplus double pipes, an aging-resistant EDPM fill block to bridge the clear distance between the carrier pipes is included in delivery. This will be pressed into the gap before assembly.

All end caps consist of a heat shrinking, molecular cross linked, modified and therefore nonweldable Polyolefin, and are coated by a special temperature resistant sealing adhesive at both ends. Resistant against weather conditions- and chemical influence as well as UV-radiation and alkaline soil.

Assembling steps see chapter 10.2.12
Carrier-/Jacket-pipe combinations see chapter 2.2.2, 2.2.3, 2.3.2, 2.3.3, 3.2, 3.3, 3.4, 3.5

\section*{7 ACCESSORIES}
7.1 Rigid and Flexible Compound Systems

\subsection*{7.1.5 Wall duct}

Sealing Ring Standard

Sealing Insert with Pipe Liner

Sealing rings resp. -inserts are used in order to avoid water entry at wall ducts inside of buildings or manholes. The pipe-layer will be responsible for putting on the sealing rings and for centering the inserts at the wall ducts before the connection to the pipeline of the building.

The wall ducts have to be installed rectangular to the wall. Radial loads due to subsidences at building- or manhole entry as well as lateral dislocations will cause leakages. This can be avoided by careful compression of the soil at the area of the entry. Installation of isoplus-pipes without sealing rings is not permitted. Inside of the building a minimum overlapping of the PE-jacket-pipe has to be considered.

\section*{Sealing Ring - Standard}

Standard sealing ring consists of special profiled, non ageing neoprene rubber ring and is suitable for sealing against non pressing and none damming up water acc. to DIN 18195-4. The ring-breadth is 50 mm independing from nominal diameter, the strength resp. thickness of the conical ring is 12 mm up to 22 mm . The ring will be pushed to the middle of the wall duct and will be imbedded in concrete afterwards by a constructing company. At standard sealing rings axial expansions up to 10 mm are permissible.

\section*{Sealing Insert - C 40}

In case of pressing and damming up water acc. to DIN 18195-6 gas- and compressed water a tight sealing insert, which can be restreched from inside has to be used. This consists of a doublesealing insert with two steel-pressure-disks, as well as each of two 40 mm , black EPDM-solid-rubber sealings (Ethylen-Propylen-Rubber), shore-hardness \(=35\) ShA. All metal parts are electrogalvanized, yellow-chromated and sealed. The special for KMR constructed sealing areas will guarantee a constant distribution of compression on the PEHD-jacket-pipe and will avoid any imprints or necks.
It will be installed into a pipe liner or core drilling. Drilling resp. imbedding in concrete of the pipe liner will be carried out by a construction company. The length of the pipe liner is depending from the wall thickness. The retention moments of the screws have to be considered strictly, in order to avoid any damages of the jacket-pipe during assembling. At sealing inserts axial expansions up to 20 mm are permissible in case of creeping expansion, that means no temperature-impacts which will occur i. e. at steam.

7 ACCESSORIES

\subsection*{7.1 Rigid and Flexible Compound Systems}

\subsection*{7.1.6 Expansion Pads}

Expansion pads (DP) are compensating movements of isoplus-pipelines at L-, Z- and U-elbows, at branches, at reduction- and end-couplers, at shut-off-valves as well as at high- and lowest points. The pipe-layer is responsible to keep the increased minimum distances between the jacket-pipes and the trench side-walls at the expansion pad areas, see chapter 9.2.4.

Only because of that a regular DP-assembling according to the pipe-static requirements will be guaranteed. As standard DP with a thickness of 40 mm and a length of 1000 mm will be produced. If a thickness of \(>40 \mathrm{~mm}\) will be required, two or more pads should be glued upon another by flaming up. Assembling will be made exclusively by approved and isoplus-educated installers.

\section*{Kind of execution}

\section*{DP - Standard}

One meter of DP-standard includes two pieces of stripes for lateral assembling at 3.00 o'clock and 9.00 o'clockposition. Hereby a heat accumulation will arise at the pipepeak.

\section*{DP - Part-Covering}

Like DP-standard, but with an additional factory backed outside, solid edge-area of laminate for complete covering of the PEHD-jacket-pipe in closed horizontal-oval execution. Hereby no heat accumulation will arise and penetration of sand between jacket-pipe and pad will be avoided.

\section*{DP - Full-Covering}

Like DP-part-covering, but not in stripe-execution, however as DP-mats, which will cover the circumference of the PE-jacket-pipes totally. Longitudinal and lateral abutting ends will be glued by flaming up of laminate. One meter DP-full covering consists of a piece of mat of 1000 mm length and a breadth depending from dimension. This alternative can be used only conditionally, resp. the DP-thickness has to be reduced to max. 80 mm , due to the high heat accumulation, especially at the pipe-peak.

\section*{7 ACCESSORIES}

\subsection*{7.1 Rigid and Flexible Compound Systems}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Technical Parameter \(20^{\circ} \mathrm{C}\) & & Standard & Unit & Value - DP & Value - Laminate \\
\hline Raw Density \(\rho\) & & DIN EN ISO 845 & \(\mathrm{kg} / \mathrm{m}^{3}\) & \(32 \pm 4\) & \(45 \pm 4\) \\
\hline Tensile Strength \(\sigma_{B}\) & & DIN EN ISO 1798 & \(\mathrm{N} / \mathrm{mm}^{2}\) & 0,16 & 0,59 \\
\hline Breaking Elongation \(\varepsilon_{R}\) & & DIN EN ISO 1798 & \% & 55 & 109 \\
\hline Rebound Resilience R & & DIN 53512 & \% & 45 & --- \\
\hline Compressive Strain \(\sigma_{\mathrm{D}}\) at deformation (spring characteristic) & \[
\begin{aligned}
& 25 \% \\
& 50 \%
\end{aligned}
\] & DIN EN ISO 3386 & N/mm \({ }^{2}\) & \[
\begin{aligned}
& 0,045 \\
& 0,110
\end{aligned}
\] & \[
\begin{aligned}
& 0,023 \\
& 0,050
\end{aligned}
\] \\
\hline Deformation by compression after 24 h relief DVR & \[
\begin{aligned}
& 25 \% \\
& 50 \%
\end{aligned}
\] & DIN EN ISO 1856 & \% & \[
\begin{gathered}
6 \\
22
\end{gathered}
\] & 18 \\
\hline Thermal Conductivity \(\lambda\) & & DIN 52612 & \(\mathrm{W} /(\mathrm{m} \cdot \mathrm{K})\) & 0,042 & 0,039 \\
\hline Water Absorption after 24 h & & DIN 53428 & vol.\% & 2 & 3 \\
\hline Water-Steam Absorption after 24 h (\(\mathrm{d}=\) thickness) & & DIN EN ISO 12572 & \(\mathrm{g} / \mathrm{m}^{2} \cdot \mathrm{~d}\) & \[
\begin{gathered}
\mathrm{d}=60 \mathrm{~mm} \\
0,15
\end{gathered}
\] & \[
\begin{gathered}
d=10 \mathrm{~mm} \\
0,65
\end{gathered}
\] \\
\hline Material Class & & DIN 4102 & --- & B 2 & B 3 \\
\hline Material & & \multicolumn{4}{|r|}{Closed celled, cross linked, not corroded, rodent-protected and chemical resistant white Polyethylene-foam-laminate} \\
\hline
\end{tabular}

\section*{Measures DP-Stripes}

\section*{Size I}
(1 nick)

Size II
(3 nicks)

\section*{Application}

Size III (5 nicks)

\begin{tabular}{|c|c|l|}
\hline Jacket-Pipe- \(\varnothing\) in mm & Size & \multicolumn{1}{c|}{ Combination } \\
\hline \(65-160\) & I & --- \\
\(180-280\) & II & --- \\
\(315-355\) & III & --- \\
\(400-500\) & IV & II + II \\
560 & V & II + III \\
\(630-670\) & VI & III + III \\
710 & VII & III + II + II \\
800 & VIII & III + III + II \\
900 & IX & III + III + III \\
1000 & X & III + III + II + II \\
1100 & XI & III + III + III + II \\
1200 & XII & III + III + III + III \\
1300 & XIII & III + III + III + II + II \\
\hline
\end{tabular}

\section*{Example of Combination Size \(\mathbf{V}\)}

\subsection*{7.1 Rigid and Flexible Compound Systems}

\subsection*{7.1.7 PUR-Foam}

Polyurethane-hard foam consists of two components Polyol (component A, bright) and Isocyanat (component B, dark). As blowing agent environmental friendly C-Pentane will be used, whose characteristics will neither impair the ozonosphere nor will increase the greenhouse effect. In the factory Polyurethanehard foam (PUR) will be manufactured by use of high sophisticated high pressure equipment.

At site isoplus installers are using manual mixed can-foam which will be mixed by use of a turbo-mixer, or machined foam, which will be portioned acc. to corresponding requirements in pre-heated containers from a mobile foaming equipment.

Because of an exothermal chemical reaction a high-quality insulation material comes into being with excellent insulation characteristics and a low specific gravity. PUR-foam is reaching a high pressure resistance at thermal load as well as a long life-time. The temperature-dependent field of application of the current stage of development extends far beyond the required values according to EN 253.

Studies from officially approved material-test-authorities (AMPA) certify a lifetime of at least 30 years as well as a thermal conductivity \([\lambda]\) of maximum \(0,027 \mathrm{~W} /(\mathrm{m} \cdot \mathrm{K})\) at discontinuous
 production. In the continuous production of pipe bars the thermal conductivity is maximum \(\mathbf{0 , 0 2 4} \mathbf{W} /(m \cdot K)\), at flexible pipes max. 0,023 W/(m•K).

Due to an optimal adhesive force of the PUR-foam, a very high shearing strength will be reached between jacket-pipe and foam as well as between foam and carrier pipe. Because of that the reached compound can compensate the frictional force which will occur due to the thermal stress between sand-bed and jacket-pipe, as well as the occurring shearing- and pressure tension.
\begin{tabular}{|c|c|c|}
\hline Technical Characteristics PUR-Hard-Foam & Unit & Minimum value acc. to EN 253 \\
\hline Raw density free foamed \(\rho\) & \(\mathrm{kg} / \mathrm{m}^{3}\) & 50 \\
\hline Radial compression strength \(\sigma_{\text {Druck }}\) at 10\% deformation & \(\mathrm{N} / \mathrm{mm}^{2}\) & 0,40 \\
\hline Closed cells & \% & 90 \\
\hline Size of cells in radial direction & mm & <0,5 \\
\hline Water absorption after 90 minutes boiling-test & vol. \% & 5 \\
\hline Maximum continuous operating temperature \(T_{\max }\) & \({ }^{\circ} \mathrm{C}\) & 161 \\
\hline Lifetime L & a & \(\geq 30\) \\
\hline Thermal Conductivity \(\lambda\) at \(50^{\circ} \mathrm{C}\) average temperature & W/(m•K) & \(\leq 0,027\) \\
\hline Specific Heat Capacity \(\mathrm{c}_{\mathrm{m}}\) & kJ/(kg•K) & 1,4 \\
\hline Material Class (highly flammable) & DIN 4102 & B 3 \\
\hline Fire Resistance Class (fire-retardant) & DIN 4102 & \(<\mathrm{F} 30\) \\
\hline Ozone Depletion Potenzial ODP & --- & 0 \\
\hline Global Warming Potential GWP & --- & <0,001 \\
\hline
\end{tabular}

Foam used at site has to be stored acc. to EN 489 at \(+15^{\circ}\) up to \(+25^{\circ} \mathrm{C}\), and can be used at surface temperatures between min. \(15^{\circ}\) and max. \(45^{\circ} \mathrm{C}\). Maximum storing period is 3 months. Depending from quantity delivery will be in 1 ltr ., 5 ltr . or in 10 ltr . units, incl. the corresponding required multiple mixing-cans.

\section*{7 ACCESSORIES}

\subsection*{7.1 Rigid and Flexible Compound Systems}

\subsection*{7.1.8 Joining Pipe / Assembling Supports / Warning Tape}
isoplus-pipes often have to be connected to existing channel net-works. In case of lateral duct through the channel wall a lateral movement will normally occur. By use of a joining pipe this movement can be compensated.

Delivery length of the PEHD-fitting will be \(1,00 \mathrm{~m}\). It consists of a central placed PEHD-jacket-pipe- and socket pipe. Delivery includes a shrink seal for the socket pipe-end for sealing of the joining pipe to the PEHD-jacket of the corresponding PEHD-jacket pipe.

Sealing of the joining pipe will be made with the technically required wall-duct, see chapter 7.1.5, this will be not included in the delivery.

Technical caracteristics PEHD see chapter 2.1.4
\(\mathrm{D}_{\mathrm{a}}{ }^{\prime}=\) Joint-pipe diameter
\(\mathrm{Da}_{\mathrm{a}}=\) Jacket-pipe diameter
\(\Delta \mathrm{L}_{\text {Lat }}=\) Maximum permissible expansion compensation, lateral resp. transverse

\section*{Assembling Supports}

Pipe supports are used as auxiliary bearing support for isopluspipelines up to a jacket-pipe diameter of max. 315 mm . Contrary to squared timber, they have not to be removed and should therefore preferably used. Pipe supports consist of extruded hard-foam free of fluorine hydrogen. Three point of support, resp. pieces of supports are required per 6,00 m pipeline.

\section*{Warning Tape}

Warning tapes are used for marking isoplus-pipelines above the finished sand-bed and the first filling layer of 200 mm in 12.00 o'clock position of primary and secondary pipeline. The warning tapes will be delivered in coils of 250 m length and a breadth of 40 mm , with black inscription on yellow background "Attention District Heating Pipeline".

\subsection*{7.2 Special Accessories Flexible Compound Systems}

\subsection*{7.2.1 Press Tool / Bending Tool}

\section*{Press Tool}

For the pressing procedure three types of tools are available:
\(\Rightarrow\) Mechanical press tool for isopex-pipes up to dimension of 40 mm
\(\Rightarrow\) Hydraulically press tool for isopex-pipes up to dimension of 40 mm
\(\Rightarrow\) Hydraulically press tool for isopex-pipes starting from 50 mm

All tools incl. all required accessories like press-pincers, -blocks and -ridges, expansion pincer and -heads as well as the corresponding small accessories are completed in a stable metal suitcase.

Depending from requirements they can be used for some days or weeks against payment. During this time the user of the tools will be exclusively responsible for correct function, cleaning and complete return of the equipment.

\section*{Bending Tool}

For the procedure of bending of isoflex or/and isocu the hydraulically isoplus-bending tool incl. pump and pressure hoses will be available. Bending will be made in three to four steps. Depending from kind of flexible pipe different minimum bending radius should be considered. See chapter 3.2.2 and chapter 3.3.2

The use of a not suitable bending equipment is not allowed. In order to avoid damages of the flexible pipes bending around edges like foreign pipe-lines, squared timber, buildings- or wallcorners are not permitted.

Depending from requirement the equipment may be used for days or weeks. During this period the user will be exclusively responsible for correct function, cleaning and the complete return of all parts.

For bending of isopex-pipes the use of a tool will be not possible, due to the high self-elasticity of the carrier pipe.

\section*{7 ACCESSORIES}

\subsection*{7.2 Special Accessories Flexible Compound Systems}

\subsection*{7.2.2 Protection Cap / Distributing Manhole}

\section*{Protection Cap}

In order to protect the PUR foam against moisture by means of condense, inside of buildings (drying-rooms) protection caps should be used. These are consisting of age-resistant neoprenerubber and will be used as simplex- or duplex-cap, depending from kind of flexible pipe-type.

The pipe laying company will be responsible to put on the protection cap before connecting with the building line. These caps have to be protected from fire, may not be cutted and may not be used for post installation. The installation of the pipe ends without protection cap is not permitted.

Available PE-jacket-pipe dimensions see chapter 3.2.2, 3.3.2, 3.4.2, 3.5.2

\section*{Distributing Manhole}

A distributing manhole will be used for checking of installations like branches within a isopex-pipeline. This inspection manhole incl. cover-plate consists of polyethylene (PE) and will be delivered in dimension of 800 mm and an installation height respectively depth of approx. 700 mm .

The universal and water-tight construction allows the connection of up to eight pipes with jacket-pipe dimensions of 65 to 180 mm .

Before the flexible pipe will be installed, the pipe layer should install the corresponding sealing set. This consists of a closed heat shrinkable sleeve as well as of a centre ring in accordance with the jacket-pipe dimension. The sealing sets are not part of the delivery of the distributing manhole.

At a pipe covering height of \(0,4 \mathrm{~m}\) the maximum admissible load of the cover will be \(50 \mathrm{kN} / \mathrm{m}^{2}\). In case that higher coverings will be reached, a well ring respectively a soak-hole concrete ring should be installed above the PE-manhole.

\subsection*{7.2 Special Accessories Flexible Compound Systems}

\subsection*{7.2.3 Twin-Accoutrement}

This fitting unit, consisting of two ball-valves, may be used for all isoplus-flexible pipes for heating installations. It should be installed at the wall in closed position with the included mounting-plate.

Casing and welding ends are made of P235GH , (MaterialNumber 1.0345), ball of stainless steel (Material-Number 1.4301) and gear-shaft of stainless steel (Material-Number 1.4404), ring and sealing of PTFE (Teflon), available for carrier pipe dimensions of \(3 / 4\) " to maximum 2 ".

For isopex type \(\mathbf{H - 2 5}\) to \(\mathbf{H}-63\) additionally two connection couplings with welding ends are required, see chapter 3.6.5.

\subsection*{8.1 General}
8.1.1 Explanation to Leak Detecting 8/1
8.2 IPS-Cu
8.2.1 Description \(8 / 2\)
8.2.2 Function 8/3
8.3 IPS-NiCr
8.3.1 Description \(8 / 4\)
8.3.2 Function 8/5-6
8.4 Device Technology
8.4.1 Analog / Monitoring Equipment 8/7-11
8.4.2 Digital / Detecting Units with Monitoring 8 / 12-17
8.4.3 Digital / Software 8/18-19
8.5 System Accessories Analog / Digital
8.5.1 IPS-VE 10 / IPS-PAF / IPS-KAF / IPS-MSP 8/20
8.5.2 IPS-VD-Cu / IPS-VD-NiCr / IPS-TPD. \(8 / 21\)
8.5.3 IPS-MD / IPS-MPD / IPS-ID-Cu 8/22
8.5.4 IPS-SK / IPS-IK / IPS-DK / IPS-EK 8/23
8.5.5 TV / MODEM / PFA / FSV 8/24
8.6 Technical Data
8.6.1 Analog 8/25
8.6.2 Digital. 8/26-27

\section*{8 LEAK DETECTING}

\subsection*{8.1 General}

\subsection*{8.1.1 Explanation to Leak Detecting}

Even slight leaks may cause essential damages. The result could be heat loss, corrosion at pipelines and interruptions of operation. Therefore isoplus offers two leak detection systems and monitoring systems, which will guarantee a continuous monitoring of the complete pipeline concerning moisture and pipeline damages, because of two foamed in copper- or resistance wires and due to different kind of measuring units, suitable for the correspondent application.

The monitoring includes not only the coupler area, but also each meter of the pipeline. Even very slight moisture of the PUR-hard foam caused by leaking weld seams or building-moisture will be indicated, also at high-impedance range. Damages of the PEHD-jacket-pipe, i. e. caused by civil underground engineering or planting as well as wire break, will also lead to a fault indication.

Within the coupler connections and T-branches no sensible fully or half-active electronic components will be used, which will eventually lead to an early wearing of the alarm system. The measuring units with the electronic components are outside of the building, manholes or corresponding pale-distributors.

In case of IPS-Cu \({ }^{\circledR}\) (Copper) two bare copper wires will be foamed into the pipe bars and into all fittings, as detecting or monitoring wires. In case of IPS-NiCr \({ }^{\circledR}\) (nickel-chrome) the two detecting wires consist of an isolated resistance-(sensor-wire) an a copper wire (loop-wire).

The isolation of the NiCr-sensor-wire is perforated in cyclic defined distances. All wires are wearing free, corrosionand temperature resistant.

For optical characteristics feature the detecting wires are coloured coded. IPS-Cu \({ }^{\text {® }}\) by a bare and a tinned copper wire, IPS- \(\mathrm{NiCr}^{\circledR}\) by a yellow and a black isolated wire. Therefore any confusion will be excluded. The wires will be connected before foaming the couplers, by use of a pressconnection which will be additionally soldered in case of IPS-Cu \({ }^{\circledR}\), and in case of IPS-NiCr \({ }^{\circledR}\) shrinked.

All branch pipelines as well as later pipeline extensions, cann be integrated into the leak detecting system without any problem. The assembling of the leak detecting will be carried out parallel with the insulation and sealing works, by AGFW-/BFW- approved and isoplus-factory educated specialists. The wires of each coupler connection will be wired and again tested after the foaming procedure, concerning correct transmission. At the final assembling of all accessories and required equipments, an additional recorded acceptance will be carried out.

\subsection*{8.2.1 Description}

The IPS-Cu \({ }^{\circledR}\) - system is especially suitable for network monitoring of pipelines. An effective safety could be reached due to a simple construction and a consequent further development. Lasting for decades of experience and developments will enable a compatible and manufacturer predominant wire system of the "Nordic Monitoring Technology".

This standard and the popularity of IPS-Cu \({ }^{\circledR}\) allow an economic useful production and installation. A standard assembling in the pipe and in the coupler connection will allow a optimum product and function control and will secure the quality requirement. The resulting minimization of the assembling failures will increase the expected life time of the complete pipeline.

Because of its architecture the IPS-Cu \({ }^{\circledR}\) is already offering a very high degree of failure security. An interrupted loop will i. e. not limit the function because the excavation of the located failure position can be avoided for the time being, due to a simple change over in the wire. Therefore an extreme economical operation of the equipment will be possible during the complete life time.

The special characteristic of IPS-Cu \({ }^{\circledR}\) are the both bare copper wires. Both wires are available with their complete surface for failure determination in the total pipeline. This will be an essential advantage for an early recognition of a tendency change. The IPS-Cu \({ }^{\circledR}\) - system offers the optimum solution for various problems, due to a permanent further developing equipment technology, which offers an early and safe recognition and detection.

Two bare copper wires with a standardized \(1,5 \mathrm{~mm}^{2}\) profile will be factory foamed into the compound jacket-pipe. For visual distinctive features one wire is galvanic tinned. Required wire connections within the jacket-pipe couplers will be carried out with squeeze-husks and additional soldering with soft solder.

The wire distance holders will fix the wire position within the coupler area. Both wires are short circuited at the end points of the pipeline, in order to create finally a measuring loop. Branch pipelines will be included directly in consideration to the wiring guidelines. The detecting unit will be installed at the starting point of the measuring loop, i. e. in the heating station.

An additional wiring design will be not necessary, due to the isoplus-presentation of the required hard-ware components which have to be installed and the standardized course of the detecting wires. Because of the complete documentation on one view, the unfavourable comparison between wiring and pipeline course as well as the double recording will be a matter of the past.

\section*{8 LEAK DETECTING}
8.2 IPS-Cu

\subsection*{8.2.2 Function}

The monitoring in case of IPS-Cu \({ }^{\circledR}\) will be carried out via the ohm-resistance measurement between the pair of wires and the electric conducting carrier pipe. Because PUR-foam is like an electrical isolator, a high isolation resistance will occur between wire and carrier pipe in case of an intact compound jacket-pipe.

Additionally a wire loop measurement will be carried out for in-house monitoring. A location of determined failures will be made by use of impulse-reflector-measurement, therefore a wire loop will be required.

The impulse-reflector-technology is using the high frequency electrical characteristics of pipelines. Due to the geometrical location of the foamed in bare Cu-wires and the carrier pipe as well as the electrical characteristics of the PUR foam technology, a wave impedance will occur which will be almost constant along the total length.

Electrical impulse of low energy will spread undisturbed with approximate light velocity. The wave impedance in the PUR-foam will change in case of a moisture penetration which has not to be electrical conducting. The spread of the impulse will be disturbed and a reflection of the impulse will occur within this area (echo). The position of the fault will be calculated from the time between transmitted pulse and reflection.

isoplus offers for this purpose the digital leak detecting hardware IPS-Digital \({ }^{\circledR}\). The advantage is the impulse feeding via the sample-and-hold procedure. The wire system will be sampled in regular periods (sample) and the signals will be pre-recorded (hold).

At a certain time eventual returning reflections will be recorded. Due to the different time of recording it will be possible to check certain sections of the pipeline in detail concerning echo (reflections). With a total number of 6000 impulses IPS-Digital \({ }^{\circledR}\) will reach with IPS-Cu \({ }^{\circledR}\) a definition of at least \(0,5 \mathrm{~m}\), the locating exactness will be 0,2 \%.

In case of high frequent fault indication the number of impulse will be increased. Also in such a case measurements will be unlimited possible, by use of secondary filters and mathematical algorithm. Also multiple faults within a measuring section can be definitely determined and located.

\subsection*{8.3.1 Description}

The IPS-NiCr \({ }^{\circledR}\) - System will be suitable like IPS-Cu \({ }^{\circledR}\) especially for the monitoring of pipeline networks of all sizes. For extension of an existing NiCr-detection or for application for a steel jacketpipe system IPS-NiCr \({ }^{\circledR}\) can be also used. Our experience and development will enable a compatible and manufacture extending monitoring system in the resistance reference technology.

Due to a simple construction, avoiding of active components within the pipeline as well as a standard assembling in the pipe and coupler connection, a high processing safety will be guaranteed. The IPS\(\mathrm{NiCr}^{\circledR}\) stands for a continuous detecting of the pipe and coupler area with parallel high sensitivity.

The special characteristic of the IPS-NiCr \({ }^{\circledR}\) is the perforated NiCr -wire as sensor technology. This NiCr -wire will be available with its perforation in the total pipeline network. Therefore individual moistures can be exactly detected. In connection with the permanent further developing IPSequipment technology a high degree of safety concerning detecting and monitoring will be guaranteed.

During production of pre-insulated jacket-pipes the two wires will be foamed in. Through the yellow, perforated NiCr-wire the moisture will be detected. The PTFE-isolation (Polytetrafluorethylen resp. Teflon \({ }^{\circledR}\)) which is covering the \(0,5 \mathrm{~mm}^{2} \mathrm{NiCr}\)-wire (NiCr 8020) is resistant up to \(260^{\circ} \mathrm{C}\) and is perforated in regular distances. Due to a special alloying the wire has a constant longitudinal resistance of \(5,7 \Omega / \mathrm{m}\).

The black Cu-wire with a profile of \(0,8 \mathrm{~mm}^{2}\) will be used for loops and has no detection purpose. The isolation resistance up to \(205^{\circ} \mathrm{C}\) consists of FEP (Fluorinatedethylenepropylene). Required connections of NiCr- and Cu-wires within jacket-pipe couplers will be made by use of squeezehusks. Water tight and up to \(150^{\circ} \mathrm{C}\) temperature resistant shrink-hoses made of PO-Xc (Polyolefin, cross-linked by irradiation) are additionally assembled over the squeeze-husks, in order to protect them against direct moisture contact.

Wire distance holders have to be used, in order to guarantee a defined wire position in the coupler area. The measuring loop with the NiCr - and Cu -wire at the end points of the pipeline, will be connected with the monitoring unit at the determined starting point.

An additional wiring design will be not necessary, due to the isoplus-presentation of the required hard-ware components which have to be installed and the standardized course of the detecting wires. Because of the complete documentation on one view, the unfavourable comparison between wiring and pipeline course as well as the double recording will be a matter of the past.

\subsection*{8.3 IPS-NiCr}

\subsection*{8.3.2 Function}

The monitoring will be carried out like at IPS-Cu® via the ohm-resistance measurement between the pair of wires and the electric conducting carrier pipe. Because the PUR-foam is like an electrical isolator, a high isolation resistance will occur between wire and carrier pipe in case of an intact compound jacket-pipe. Additionally a wire loop measurement will be carried out for in-house monitoring.

The geometric position of carrier pipe as well as the measure- and loop wire is a system with four unknown factors. These are the both part-resistance \(R_{X 1}\) and \(R_{X 2}\), with the resistance of the pipeline \(\left[R_{\text {Rohr }}\right]=R_{X 1}+R_{X 2}\), the isolation resistance of the PUR-insulation \(\left[R_{I S O}\right]\) as well as the tension element \(\left[U_{x}\right]\). The total resistance \(R_{\Sigma}\) will be determined by the NiCr-resistance wire. The both part-resistance \(\mathrm{R}_{\mathrm{X} 1}\) and \(\mathrm{R}_{\mathrm{X} 2}\) are depending from the location of moisture.

In case of failure the conducting moisture will transfer a tension-part-value, which is depending from location, on the carrier pipe, which takes the function of the measuring wire, seen from the electrical point of view. The connection "pipe" can be compared with a loop of a potentiometer. The loop preparation will represent the location of the fault.

As shown on the replacement wiring diagram, the tension-part-value - from \(\mathrm{R}_{\mathrm{X} 1}\) and \(\mathrm{R}_{\mathrm{X} 2}\) - will be not available as direct measurable factor at connection 3 , because practically several fault factors will affect. Additionally the isolation resistance \(\left[\mathrm{R}_{\mathrm{IS}}\right.\)] and a chemical tension element [\(\mathrm{U}_{\mathrm{X}}\)], which will occur due to the different metals of resistance wire, have to be considered.

Especially the chemical tension element will adulterate the real loop preparation at connection 3. This circumstance can be recognized practically due to the fact that the measurement of the isolation resistance \(\left[\mathrm{R}_{\mathrm{ISO}}\right]\) by use of conventional measuring units, depending from polarity and degree of measuring tension, will lead to different results. Even the presentation of negative resistance, which will of course not occur, will be possible.

The inner resistance of the tension element \(\left[U_{\chi}\right]\) and therefore also the isolation resistance between wire and carrier pipe, are depending from the degree of moisture and chemical structure of the penetrating medium, i. e. water. Both will of course influence essentially the measuring result for determination of the leak location (loop-preparation) and the isolation resistance [\(\mathrm{R}_{\text {ISOO }}\)].

8 LEAK DETECTING 8.3 IPS-NiCr

Therefore the isolation resistance \(\left[R_{\mid S O}\right]\) is an essential indicator for the evaluation of the pipeline condition. Conventional measuring system will ignore the tension element \(\left[\mathrm{U}_{\mathrm{\chi}}\right]\), which can lead to essential measuring failures.

The IPS-NiCr \({ }^{\circledR}\) - system determines all electrical components of wire-/pipe arrangement with a high degree of exactness and a new digital procedure. Several distribution conditions will be set up to the shown connections 1 to 3 , see previous page, and the occurring tension- and current values will be measured. After digitalisation the measured values will be transmitted to a central computer.

A mathematical algorithm (to the patent announced) will calculate the location of the moisture and the unknown factors of the part-resistances \(R_{X_{1}}\) and \(R_{X 2}\), with the resistance of the pipeline \(\left[R_{\text {Rohr }}\right]\), the isolation resistance of the PUR-insulation [\(\mathrm{R}_{\mathrm{ISO}}\)] as well as the tension element [\(\mathrm{U}_{\mathrm{x}}\)]. Due to the physical principle of the "unloaded tension distributor" only single moisture-failures can be exactly located in all NiCr-systems.

Several moisture failures cannot definitely locate in contrary to the nordic systems like IPS-Cu \({ }^{\circledR}\). Additionally it has to be considered, that in case of NiCr -systems only one moisture failure or one wirepipe contact (short circuit) can be exactly located via the resistance reference-measuring procedure. All other possible failures like i. e. a wire break have to be determined and located manually by use of other measurement technologies. isoplus is using the impulse reflector technology like at the IPS-Cu \({ }^{\circledR}\) - system.

By use of the digital monitoring hardware IPS-Digital \({ }^{\circledR}\), IPS-NiCr \(^{\circledR}\) indicates isolation resistance [\(\mathrm{R}_{\text {Iso }}\)] in the range of \(10 \mathrm{k} \Omega\) to \(20 \mathrm{M} \Omega\). From < \(10 \mathrm{M} \Omega\) a first detection will be carried out for information of the user. The indicator barrier of the alarm indication will be \(<5 \mathrm{M} \Omega\). Therefore the user will have the possibility of self-determination of his range of activity.

With a recommended limited \(\mathbf{N i C r}\)-wire length of 1.300 m the IPS-Digital \({ }^{\circledR}\) will reach with IPS-NiCr \({ }^{\circledR}\) a detection exactness of \(0,2 \%\). The failure detection may be on the total length without restriction of marginal areas. The indication of the failure position will be shown in "meter" and "percent".

\section*{8 LEAK DETECTING}

\subsection*{8.4 Device Technology}

\subsection*{8.4.1 Analog / Monitoring Equipment}

The group of monitoring equipment consists of the portable manual system tester IPS-HST, the stationary unit IPS-ST 3000 as well as the combination of, the all-round unit IPS-MSG, which will be suitable for smaller to medium pipeline networks. These are offering an automatic monitoring and can be used for IPS-Cu \({ }^{\circledR}\) and IPS- \(\mathbf{N i C r}^{\circledR}\) as well as for technical comparable systems. The IPS-ST 3000 can be additionally used for hierarchical constructed pipe-network-detecting systems.

IPS-Pipe-Network-Detecting with IPS-HST

IPS-Pipe-Network-Detecting with IPS-ST 3000

\section*{Portable Manual System Tester IPS-HST}

The manual system tester IPS-HST is a simple operating all round measuring unit for IPS-Cu \({ }^{\circledR}\) and IPS-NiCr \({ }^{\circledR}\) as well as for technical comparable monitoring systems.

The unit will be suitable for:
\(\Rightarrow\) Inspection measurements
\(\Rightarrow\) Quality control during assembling
\(\Rightarrow\) Rotational, manual monitoring of smaller pipeline networks
All measurements will be carried out automatically, program-controlled, for that further adjustments will be necessary. For NiCr-systems different longitudinal resistance values can be selected. The indication of the measuring results, there will be differentiate between isolation and loop, will be shown by a \(2 \times 16\) sign LCD-display as ohm value. In case of lowering the adjusted admissible values, an visual and acoustical signal will be indicated.

The IPS-HST is equipped with a connection cable respectively -plug for a safe connection to a measuring box IPS-MD, see Chapter 8.5.3. It can be also connected directly to leak detecting wires by use of alligator clips respectively tapping clips which are included in the delivery.

Technical parameter see data sheet, chapter 8.6.1

\subsection*{8.4 Device Technology}

\section*{Stationary Leak Detecting Unit IPS-ST 3000 with 1- to 4- Channel Technology}

The monitoring unit IPS-ST 3000 is the optimum monitoring technology for a clear pipeline network of medium size. It monitors fully automatically the connected pipelines concerning moisture, sensor wire-pipe contact and sensor wire break. It will be suitable for copper wire- and resistance wire systems like IPS-Cu \({ }^{\circledR}\) and IPS-NiCr \({ }^{\circledR}\) as well as for technical comparable systems.

Per channel maximum 2.500 m sensor wire at IPS-Cu \({ }^{\circledR}\) and 1.300 m at IPS- \(\mathrm{NiCr}^{\circledR}\) can be monitored. 10.000 m of nordic Cu-wire respectively 5.200 m NiCr -wire can be monitored with the final level, the four-channel unit IPS-ST 3000-4. The kind of connected sensor wire will be recognized automatically.

With the multiple-channel variants it will be possible to allocate every single channel to a different sensor. Therefore it will be especially suitable for mixed pipeline networks with only one central monitoring unit, the IPS-ST 3000-1, \(\mathbf{- 2 , - 3}\) or \(\mathbf{- 4}\). The following measuring data and alarm- respectively failure signals will be shown separately for every channel on the \(4 \times 20\) sign LCD-Display:
\(\Rightarrow\) Alarm barrier value
\(\Rightarrow\) Isolation resistance
\(\Rightarrow\) Failure status resp. -type
\(\Rightarrow\) Longitudinal resistance at NiCr- resp. sensor-wire-type at Cu-systems
The isolation values as well as the longitudinal resistances will be indicated in "Ohm", therefore the comparison with other measuring units will be possible at any time. Additionally to the visual indication it offers a potential-free exit for relaying of signals respectively measuring data. The IPS-ST 3000 is prepared for the connection with an external detecting unit and will be therefore a favourable detecting position. The very simple control will be made by a pressure-button.

Technical parameter see data sheet, chapter 8.6.1

\section*{Independent Leak-Monitoring-Modul IPS ST3000 - AUTARK}

ST3000 - AUTARK is the first analog isoplus-leak-monitoring-modul which is fully integrated into the „isoplus-digital family". It will be used locally and totally AUTARK - that means no current supply by conduction wires and no fix data-line (copper-bus or LWL) will be required. The product is equipped with a GSM-unit for data transmission via mobile phone network and with a powerful lithium battery (\(\mathrm{Li}-\mathrm{SoCl}_{2}\)) with guaranteed lifetime up to 5 years (*).
ST \(\mathbf{3 0 0 0}\) - AUTARK is able to monitor up to four Cu-wires of 2.500 mtr . each as well as four NiCr wires of 1.300 mtr. each and to low point sensors, depending from kind of type. All data will be evaluated and displayed with our proved isoplus-Digital software.
\({ }^{(*)}\) One measurement per day and one transmission per week to central unit

\section*{Furthermore ST3000 - AUTARK offers:}
\(\Rightarrow\) Failure evaluation via isoplus-digital-software (without locating!)
- Moisture / contact / loop interference
- Man-hole monitoring
- Battery status
- Indication of location
- configured for operational control rooms
\(\Rightarrow\) Suitable for all known copper- and NiCr-wire-systems
\(\Rightarrow\) Variable configurations:
-230 V operation with power unit
- Network usable with COM-Server
- 2/4 measurement channels, 1-2 man-hole monitoring
\(\Rightarrow\) Multiple usable:
- Central monitoring of remotelines (so called "outside-lines")
- Central monitoring of not reachable lines (i. e. in man-holes, private houses)
- Central site-monitoring (nocturnal control measurement)

The ST3000 - AUTARK / SÜ Module is for pure monitoring man-holes with two digital inputs for water level detectors or other signal transmitters (hourly measurement control).

Technical parameter see data sheet, chapter 8.6.1
8.4 Device Technology

\section*{Mobile Stationary Unit IPS-MSG 500 / 1000}

This all-round unit should be used for simple monitoring, combined with automatic detecting of small pipelines with IPS-NiCr \({ }^{\circledR}\) wire sensor technology as well as for technical comparable systems. The IPS-MSG can be used for many applications, by single combination of a stationary monitoring unit with the mobility of a manual measure unit. Monitoring up to 500 m sensor-wire will be possible with IPS-MSG 500, and up to 1.300 m with IPS-MSG 1000.

The special characteristic is the automatic detection of the centre of moisture. In case of failure checks from additional points of connection can be carried out rapid, due to the flexibility. The IPSMSG can be used equally for:
\(\Rightarrow\) Detection measurements
\(\Rightarrow\) Inspection measurements
\(\Rightarrow\) Quality control during assembling
\(\Rightarrow\) Rotational, manual monitoring and detecting of smaller pipeline networks
All measurements will be carried out automatically, program-controlled, without any additional adjustment. The outline of the measured results (differential between isolation and loop) will be shown as ohm-value, via a \(2 \times 16\) sign LCD-display. In case of undershooting of the admissible limiting value, an optical and acoustical alarm will be released.

The detected results will be determined based on the longitudinal resistance of the NiCr-wire of 5,7 \(\Omega / \mathrm{m}\), for other wire systems an additional indication as per cent value will be possible. The relaying of the failure indication will be possible via the integrated potential relay output.

The IPS-MSG is equipped with a connection cable respectively -plug for a safe connection to a measuring box IPS-MD, see chapter 8.5.3. Additionally it can be connected directly to the power supply by using an Euro-plug power-unit. A direct connection to the monitoring wires will be possible, by using tapping or alligator clips, which are included in the delivery.

Technical parameter see data sheet, chapter 8.6.1

\subsection*{8.4.2 Digital / Detecting Units with Monitoring}

The IPS-Digital \({ }^{\circledR}\) - system is the optimal complete solution for a fully automatic monitoring and parallel permanent detection. IPS-Digital \({ }^{\circledR}\) will be suitable for copper wire- and resistance wire systems IPS-Cu \({ }^{\circledR}\) and IPS-NiCr \({ }^{\circledR}\) as well as for technical comparable systems. IPS-Digital \({ }^{\circledR}\) offers a central leak detecting management for medium- up to big respectively branched pipeline networks.

The modular structure will assist the economical construction of a corresponding adapted monitoring installation. With IPS-Digital \({ }^{\circledR}\) several specific wire characteristics may be chosen free of any restrictions. Due to this an essential and unique safety at the central recording and evaluation of different sensor-wire-systems can be reached.

Due to the software based control and evaluation of the complete system, a simple up-date and configuration to the project-typical factors will be possible. The automatic recognition of the kind of measuring unit, i. e. IPS-Cu \({ }^{\circledR}\) or IPS- \(\mathrm{NiCr}^{\circledR}\), the friendly operation as well as an optimum of safety in monitoring and detecting, are additional essential advantages of IPS-Digital \({ }^{\circledR}\).

Depending from application the following IPS-Digital \({ }^{\circledR}\) - components will be available:
Units for an expandable monitoring network IPS-Digital \({ }^{\circledR}\) Site
\(\Rightarrow\) IPS-Digital-MDS \(\quad\) Central measuring data acquisition 8 /14
\(\Rightarrow\) IPS-Digital-Cu-MS
\(\Rightarrow\) IPS-Digital-NiCr-MS
Measuring spot for Cu-systems
8/15
\(\Rightarrow\) IPS-Digital-TV
\(\Rightarrow\) IPS-Digital-MODEM
Measuring spot for NiCr-systems
8/15
Data T-distributor
8/24
\(\Rightarrow\) IPS-Digital-PFA
Modem extension for IPS-MS
8/24
\(\Rightarrow\) IPS-Digital-FSV
Alarm-reporting-module \(8 / 24\)
Distant voltage supply 8 / 24

\section*{Single units for smaller monitoring networks without extension}
\(\Rightarrow\) IPS-Digital-Cu-KMS
\(\Rightarrow\) IPS-Digital-NiCr-KMS

Compact measuring spot for Cu -systems
8 / 16
Compact measuring spot for NiCr-systems 8/16

Portable units for application at site as well as for unstructured networks
\(\Rightarrow\) IPS-Digital-Cu-MBS \(\quad\) Mobile unit for Cu-systems 8 /17
\(\Rightarrow\) IPS-Digital-NiCr-MBS \(\quad\) Mobile unit for NiCr-systems \(8 / 17\)
\(\Rightarrow\) IPS-Digital-UNI-MBS \(\quad\) Mobile unit for Cu- and/or NiCr-systems 8 /17

\section*{Software modules for control, extension and adaptation}
\(\begin{array}{lll}\Rightarrow \text { IPS-Digital-SSW / AUTARK } & \text { Control software for IPS-Digital }{ }^{\circledR} \text { and AUTARK } & 8 / 18 \\ \Rightarrow \text { IPS }\end{array}\)
\(\Rightarrow\) IPS-Digital-VISUAL
Failure visualisation with design presentation
8/19

\section*{8 LEAK DETECTING}
8.4 Device Technology

\section*{Construction of a IPS-Digital \({ }^{\circledR}\) - Pipe Network Monitoring}

8 LEAK DETECTING
8.4 Device Technology

\section*{Measuring Data Acquisition Station IPS-Digital-MDS}

The central measuring data acquisition station MDS is an essential part of the control central of an IPS-Digital \({ }^{\circledR}\) - network. Together with an usual desktop computer or notebook (PC) and the control software SSW the total monitoring network will be central controlled. The MDS is the interface between central-control respectively PC and monitoring network, respectively pipeline.

There will be an adaptation from the PC-interface RS 232 to the RS 485 interface of the measuring spot/s MS. By use of a data transfer based on interface RS 485 a data intensification respectively a data-refresh will be not necessary.

The MDS represents additionally a galvanic separation between external (in direction measuring spot/s) and internal (in direction PC) data network. Because of this a high effective protection against interference- and over-voltage will be required. In case of interference the control software SSW will activate a potential-free relay-exit which is integrated in the MDS, and which will be available for transmission to a process-control-system.

Technical parameter see data sheet, chapter 8.6.2

\subsection*{8.4 Device Technology}

\section*{Measuring Spot IPS-Digital-MS with 2- or 4- Channel Technology}

The measuring spot MS is the basic hardware within an IPS-Digital \({ }^{\circledR}\) - network and is placed at the corresponding end point of a monitoring section, directly at the pipe end. Depending from requirement measuring spots will be used with 2- or 4- channel technology, MS-2 or MS-4. Their control will be made via the measuring data acquisition station MDS respectively via the control software SSW.

All recorded data will be digitized and send via the RS 485 interface to MDS. Each MS is equipped with a data input and -output as well as with two respectively four pipeline- respectively measuring connections, depending from grouping of cables. The data connections are galvanic separated against the measuring spots. Several MS, which are working parallel like a data-refresh, will be connected interrelated in cascade form.

Because of this the maximum possible data transmission length will be available at each of the 16fold addressable MS. For an alternative adaptation and extension each MS can be extended by the data transfer per MODEM.

\section*{IPS-Digital-Cu-MS 2 / 4}

One Cu-MS will supervise and detect changes of impedance on maximum 2.500 m sensor wire per channel. For that the impulse-running-period-measurement will be used. Additional constant- and alternating voltage as well as the ohmic resistance will be determined.

\section*{IPS-Digital-NiCr-MS 2 / 4}

One NiCr-MS will supervise and detect changes of resistance on maximum 1.300 m sensor wire per channel. For that the constant-voltage-resistance-measurement will be used. The detection of failures will be made via the resistance-detecting measurement procedure.

\section*{Compact Measuring Spot IPS-Digital-KMS with 2- or 4-Channel Technology}

The compact measuring spot KMS is the basic hardware within an IPS-Digital \({ }^{\circledR}\) - network and is placed directly at the starting point of the monitoring section at the location of the control computer (desktop or notebook). The KMS consists of a measuring spot assembled at the end of the pipeline, and of a standard PC with software SSW, which should be installed within a distance of maximum 20 m .

Depending from requirement compact measuring spots will be used with 2- or 4- channel technology, KMS-2 or KMS-4, which cannot be interlaced with each other. All recorded data will be digitized and transmitted to the control software SSW respectively to the control computer.

The data connections are galvanic separated opposing of the measure-ports. For an optional adaptation and extension each KMS can be extended by data transfer per MODEM. Each KMS has a potential-free contact for transmission to an operating control system.

\section*{IPS-Digital-Cu-KMS 2 / 4}

One Cu-KMS will supervise and detect changes of impedance on maximum 2.500 m sensor wire per channel. For that the impulse-running-period-measurement will be used. Additional constant- and alternating voltage as well as the ohmic resistance will be determined.

\section*{IPS-Digital-NiCr-KMS \(2 / 4\)}

One NiCr-KMS will supervise and detect changes of resistance on maximum 1.300 m sensor wire per channel. For that the constant-voltage-resistance-measurement will be used. The detection of failures will be made via the resistance-detecting measurement procedure.

Technical parameter see data sheet, chapter 8.6.2

\subsection*{8.4 Device Technology}

\section*{Portable IPS-Digital \({ }^{\circledR}\) - Pipe Network Monitoring}

This complete measuring system is suitable for manual monitoring and detection of unstructured networks as well as for site application. Depending from requirement the following system variants, completed in a stable measuring suitcase, will be different:
```

=> IPS-Digital-Cu-MBS - Mobile unit for Cu-Systems
- Impulse-running period measurement (i. e. IPS-Cu® or comparable)
=> IPS-Digital-NiCr-MBS - Mobile unit for NiCr-Systems
- Resistance measurement (i. e. IPS-NiCr }\mp@subsup{}{}{\otimes}\mathrm{ or comparable)
=> IPS-Digital-UNI-MBS - Mobile combined unit for Cu- and NiCr-Systems

```

The handling of the mobile station MBS is very simple, and due to an integrated accumulator the measuring suitcase can be used also independent from network. The control of all manual or automatic measurements will be made via the included notebook and installed control software SSW. For that the notebook will be purchased directly or placed at disposal. Due to the unique flexibility an MBS will be especially suitable for:
\(\Rightarrow\) Acceptance control with direct protocol print out
\(\Rightarrow\) Failure detection with picture print out of impulse-running period
\(\Rightarrow\) Automatic monitoring and detection in free defined pipeline sections
\(\Rightarrow\) Continuous supervising of construction without additional equipment
All collectable data will be determined by software control, visualised evaluated and archived. An eventually required failure detection will be also made fully automatically. Therefore the MBS is an independent measuring equipment. A long term monitoring of one or several pipeline sections will be also possible.

The single sections have to be defined exactly, because each MBS will be addressable up to 100fold. A required data-exchange will be made via the standard interfaces of the notebook. An MBS can be of course extended additionally with all available software modules.

Technical parameter see data sheet, chapter 8.6.2

\subsection*{8.4.3 Digital / Software}

\section*{Control Software IPS-Digital-SSW / AUTARK}

One single software will be sufficient for the control of the complete IPS-Digital \({ }^{\circledR}\) - network. All units of the IPS-Digital \({ }^{\circledR}\) - hardware are using this software. The following basic logic functions will be carried out:
\(\Rightarrow\) Measured value- and failure evaluation
\(\Rightarrow\) Adjustment of the response levels
\(\Rightarrow\) Print out of all measuring data and failures
\(\Rightarrow\) Acoustical and visual alarm or forwarding to PFA
\(\Rightarrow\) Calibration of different kind of sensors, that means kind of wire
\(\Rightarrow\) Automatic, software-based detection of failure spots
\(\Rightarrow\) Central, menu-driven operation and control of the complete equipment
\(\Rightarrow\) Direct evaluation of data and plain text announcement of the pipeline condition
\(\Rightarrow\) Automatic recognition of kind of measuring station in mixed equipment
\(\Rightarrow\) Archive of measuring data and failures incl. date and time (time-stamp)
\(\Rightarrow\) Passing-on alert for IPS-Man-hole water sensor (ST3000 - AUTARK)
Optional extension with VISUAL will be possible. In order to guarantee an optimal operation, the central and standard desktop computer or notebook should fulfil the following minimum configurations:

Operating system:
Processor:
Working memory:
Free hard disk:
Graphics:
Drive:
COM-Port:
Sound card:
Printer:

Windows \({ }^{\circledR}\) NT, XP, 2000 and more actual
> 400 MHz preferable
\(\geq 64\) MB RAM
ca. 150 MB , incl. Archive
\(\geq 800 \times 600\) Pixel / 256 colours
CD-Rom / CD-burner
1 x RS 232 or USB 1.1/2.0
yes, in case that acoustic signal will be required Printout via commercial printers

\section*{8 LEAK DETECTING}

\subsection*{8.4 Device Technology}

\section*{Fault Visualisation IPS-Digital-VISUAL}

This extension module will be used for presentation of the detected failure spots in the pipeline design. Because of this an enormous simplification concerning the determination of failure spots in expanded pipeline networks will be reached. The module, which will get the required data for presentation from the control software SSW, is working on the basis of Bitmap-data (BMP/Tiff).

By simple scanning it will be possible to use also older drawings, which have been not established by CAD. VISUAL can be also used with other detecting systems, because a manual input of determined detection data will be possible. The following basic functions will be carried out by VISUAL:
\(\Rightarrow\) Lens function
\(\Rightarrow\) Indication of failure spot
\(\Rightarrow\) Mouse controlled menu-guidance
\(\Rightarrow\) Coloured codification of single channels
\(\Rightarrow\) Automatic data transfer SSW
\(\Rightarrow\) Manual failure detection input in case of foreign systems
\(\Rightarrow\) In mixed systems with IPS-Cu \({ }^{\circledR}\) and IPS-NiCr \({ }^{\circledR}\) usable
\(\Rightarrow\) Indication of the failure spot and the neighbouring digitizing spots
\(\Rightarrow\) Indication of drawings with maximum \(2036 \times 1442\) pixels at 256 grey grades
In order to guarantee an optimal operation, the central and standard desktop computer or notebook should fulfil the following minimum configurations:

Operating system: \(\quad\) Windows \({ }^{\circledR}\) NT, XP, 2000 and more actual
Processor:
Working memory:
Free hard disk:
Graphics:
Drive:
COM-Port:
Sound card:
Printer:
\(>400 \mathrm{MHz}\) preferable
\(\geq 64\) MB RAM
ca. 150 MB , incl. Archive
\(\geq 1024 \times 768\) Pixel / 256 colours
CD-Rom / CD-Burner
\(1 \times\) RS 232 or USB 1.1/2.0
yes, in case that acoustic signal will be required
Printout via commercial printers

8 LEAK DETECTING

\subsection*{8.5 System Accessories Analog / Digital}

\subsection*{8.5.1 IPS-VE1O / IPS-PAF / IPS-KAF / IPS-MSP}

\section*{Wire End Piece IPS-VE 10}

House- resp. wiring-end-point for installation of the continuous sensor-loop at calibration spots, respectively in buildings, or as connection with signal wires to all other IPS-system components. One piece per pipeline end, installed at PEHD-jacket-pipe.

\section*{Potential Connection Sensor IPS-PAF}

For a safe and permanent welded earth connection to the carrier pipe. One piece per pipeline end at location of the IPS-units.

\section*{Cable Exit IPS-KAF}

As loop-wire separation in pressure water tight and strainrelieved execution for welding in the PEHD-socket-pipe of weldable couplers, consisting of a PEHD-pipe \(\varnothing 63 \mathrm{~mm}\), PN 10, 150 mm long. An annulus sealing, a shrinkable end cap as well as an expansion pad plate \(240 \times 240 \times 80 \mathrm{~mm}\) for protection against axial movement will be included in the delivery.

\section*{Measuring Point Post IPS-MSP}

For installation of a surface- and connection point outside of buildings, consisting of a yellow, powder-coated 10.000 V disruptive strength aluminium pipe (ALMgSi). Outside diameter 100 mm , delivery length \(=2,00 \mathrm{~m}\), with end cap and spread anchor for site fastening, approx. 70 cm depth, in soil or foundation. Delivery incl. of a triangular crank-key and a fixing plate for a DIN-identification sign.

\section*{8 LEAK DETECTING}

\subsection*{8.5 System Accessories Analog / Digital}

\subsection*{8.5.2 IPS-VD-Cu / IPS-VD-NiCr / IPS-TPD}

\section*{Wiring Box IPS-VD-Cu}

For jumping and distributing of measure and sensor wires at IPS-Cu \({ }^{\circledR}\) or technical comparable systems. Polycarbonate box in moisture-proof execution with 5-pole block binder, 1 piece per pipeline pair.
Protection class: IP 65

\section*{8 LEAK DETECTING}

\subsection*{8.5 System Accessories Analog / Digital}

\subsection*{8.5.3 IPS-MD / IPS-MPD / IPS-ID-Cu}

\section*{Measure Box IPS-MD}

For installation of a measuring point at IPS-Cu \({ }^{\circledR}\) as well as IPS\(\mathrm{NiCr}^{\circledR}\) oder or technical comparable systems. Connection with the several pole-plug of an HST or with other pin-compatible measuring units for manual check of the pipeline will be possible. In moisture-proof execution, preferable one piece per pipeline. Protection class: IP 65

\section*{Measure Point Box IPS-MPD}

For installation of one or several measure points within a sensor circle at IPS-Cu \({ }^{\circledR}\) as well as IPS-NiCr \({ }^{\circledR}\) or technical comparable systems. For direct connection of a mobile-station MBS or other measuring units with 4 mm split plugs. Polycarbonate box in moisture-proof execution, preferable one piece per pipeline. Protection class: IP 65

\section*{Impedance Wiring Box IPS-ID-Cu}

For jumping and distributing of several impedance connection wires at IPS-Cu \({ }^{\circledR}\) or technical comparable systems. Polycarbonate box in moisture-proof execution. One piece per pipeline pair.
Protection class: IP 65

\section*{8 LEAK DETECTING}

\subsection*{8.5 System Accessories Analog / Digital}

\subsection*{8.5.4 IPS-SK / IPS-IK / IPS-DK / IPS-EK}

\section*{Sensor Connection Cable IPS-SK}

For wiring of sensor wires with wiring boxes and monitoring units inside of buildings or manholes, type NYM \(3 \times 1,5 \mathrm{~mm}^{2}\).

Only suitable for IPS-NiCr \({ }^{\circledR}\) within an IPS-Digital \({ }^{\circledR}\) - network. At IPS-Cu \({ }^{\circledR}\) the impedance connection cable IPS-IK has to be used.

\section*{Impedance Connection Cable IPS-IK}

For correct impedance wiring of the sensor wires with wiring boxes and monitoring units inside of buildings and manholes, type 300 ohm (\(\Omega\)).

Only suitable for IPS-Cu \({ }^{\circledR}\) within an IPS-Digital \({ }^{\circledR}\) - network. At IPS-NiCr \({ }^{\circledR}\) the sensor connection cable IPS-SK has to be used.

\section*{Data Transmitting Cable IPS-DK}

For data connection of the measuring data acquisition station IPS-MDS with the individual measuring points IPS-MS within an IPS-Digital \({ }^{\circledR}\) - network, type \(\mathrm{J}-\mathrm{Y}(\mathrm{ST}) \mathrm{Y} \geq 2 \times 2 \times 0,8 \mathrm{~mm}^{2}\) or similar.

\section*{Earth Connection Cable IPS-EK}

For buried wiring of the sensor wires at connection couplers with cable exit IPS-KAF and for relaying i. e. to a measuring point post IPS-MSP, type NYY \(7 \times 1,5 \mathrm{~mm}^{2}\).

\subsection*{8.5.5 TV / MODEM / PFA / FSV}

\section*{Data T-Distributor IPS Digital TV}

With the TV, which simultaneously serves as a galvanized separator as well as data refresh, T- and star-shaped data grid structures can build up. Depending on demand, up to a maximum of six outputs can be switched. The option with one outlet is used as a pure power enhancer in very long data strings.

In case of a direct, star-shaped distribution from the main office, the TV can also be integrated directly into a measured data acquisition system MDS with up to a maximum of three outputs.

\section*{Modem Extension IPS-Digital-MODEM}

As an expansion module for the MS measuring points, the MODEM enables data transmission to the MDS via an analog or digital (ISDN) telephone dial-up connection. During this process, fixed data lines are dropped and individual MS or whole groups of MS must be controlled by an individual MODEM.
Supply islands distant from the monitoring control center with fixed data transmission can also be connected via the MODEM and centrally recorded.
The MODEM is available as an extra device to retrofit existing systems. For new systems, this expansion can optionally be directly integrated into the MS.

\section*{Alarm Module IPS-Digital-PFA}

Expansion module with integrated, potential-free output.

\section*{Distant Voltage Supply IPS-Digital-FSV}

The FSV serves to supply individual MS via the data line or other appropriate cables. One or multiple separate wires will be connected together independently of the line cross-section and the distance between the FSV and MS. Parallel operation in a data cable without significant impairment of functionality is possible if DC voltage of max. 30 V is used.

Technical parameter see data sheet, chapter 8.6.2

\section*{8 LEAK DETECTING}

\subsection*{8.6 Technical Data}

\subsection*{8.6.1 Analog}
\begin{tabular}{|c|c|c|c|c|c|}
\hline isoplus - Device Type IPS- & HST & ST 3000 & ST 3000 - AUTARK & MSG 500 & MSG 1000 \\
\hline Page & 8.4.1 & 8.4.1 & 8.4 .1 & 8.4.1 & 8.4 .1 \\
\hline Monitoring manually / automatically & \(\sqrt{1-}\) & -1/ & \(\sqrt{1 /}\) & \(\sqrt{1 / 2}\) & \(\sqrt{1 /}\) \\
\hline Detection \(\mathrm{Cu} / \mathrm{NiCr}\) & - & - & - & \(-1 / 1\) & \(-1 / 1\) \\
\hline Measurement (\(\mathrm{L} \times \mathrm{B} \times \mathrm{H}\)) in mm & \(230 \times 85 \times 35\) & \(215 \times 245 \times 115\) & \(150 \times 300 \times 80\) & \(230 \times 85 \times 35\) & \(230 \times 85 \times 35\) \\
\hline Weight in kg & 0,5 & 2,0 & 3,0 & 0,5 & 0,5 \\
\hline Casing & Aluminium diecasting & Polycarbonate & Steel plate & Aluminium diecasting & Aluminium diecasting \\
\hline Powder coated and dip-impregnated & - & - & \(\checkmark\) & - & - \\
\hline Operating temperature & \(0^{\circ} \mathrm{C}\) to \(+40^{\circ} \mathrm{C}\) & \(+5^{\circ} \mathrm{C}\) to \(+40^{\circ} \mathrm{C}\) & \(-20^{\circ} \mathrm{C}\) to \(+50^{\circ} \mathrm{C}\) & \(0^{\circ} \mathrm{C}\) to \(+40^{\circ} \mathrm{C}\) & \(0^{\circ} \mathrm{C}\) to \(+40^{\circ} \mathrm{C}\) \\
\hline Temperature for guaranteed exactness & \(+20^{\circ} \mathrm{C} \pm 8^{\circ} \mathrm{C}\) \\
\hline Store- resp. ambient temperature & \(-10^{\circ} \mathrm{C}\) to \(+50^{\circ} \mathrm{C}\) \\
\hline Humidity until \(+31^{\circ} \mathrm{C}\) & max. \(80 \%\) & max. 80 \% & max. \(80 \%\) & max. \(80 \%\) & max. 80 \% \\
\hline Akku-/ Battery Voltage & 9 V & - & 3,6 V/12 Ah & 9 V & 9 V \\
\hline Akku-/ Battery type & \(6 \mathrm{LR61}\) (9V Block) & - & \(\mathrm{Li}_{\mathrm{i}-\mathrm{SoCl}_{2}}\) & \(6 \mathrm{LR61}\) (9V Block) & 6LR61 (9V Block) \\
\hline \(230 \mathrm{~V} \pm 10 \% / 50 \mathrm{~Hz}\) net voltage & (1) & \(\checkmark\) & -1」 & , & \(\checkmark\) \\
\hline Euro-plug connection & - & \(\checkmark\) & -1/ & \(\sqrt{ } /\) Plug-power-pack & //Plug-power-pack \\
\hline Fuse & - & \(250 \mathrm{~V} / \mathrm{T} 315 \mathrm{AL}\) & \(250 \mathrm{~V} / \mathrm{T} 100 \mathrm{~mA}\) & & - \\
\hline Power consumption operation / standby & \(35 \mathrm{~mA} /-\) & \(8 \mathrm{VA} /-\) & 4,5 VA/2 VA & \(35 \mathrm{~mA} /-\) & \(35 \mathrm{~mA} /\) - \\
\hline Consump. per year at 1 measurement per day & - & 30 kWh & 17 kWh & - & - \\
\hline Protection Class & III & & I & III & III \\
\hline Kind of protection & - & IP 54 & IP 66 & - & - \\
\hline Measuring category & 1 & 1 & 1 & 1 & 1 \\
\hline Potential Free Relay Contact & - & Opener / Turnkey & - & Opener & Opener \\
\hline Contact carrying capacity & - & \(30 \mathrm{~V} / 1 \mathrm{~A}\) & - & \(30 \mathrm{~V} / 1 \mathrm{~A}\) & \(30 \mathrm{~V} / 1 \mathrm{~A}\) \\
\hline RS 485 - Interface Input / Output & - & - & - & - & - \\
\hline Voltage level maximum & - & - & \(0 / 10 \mathrm{~V}\) & - & - \\
\hline Data cable length maximum to MS / MDS & - & - & - & - & - \\
\hline Data rate 2400-38400 baud & - & - & 9600 baud & - & - \\
\hline Automatic selection & - & - & - & - & - \\
\hline Half duplex transmission at 2-wire RS 485 & - & - & - & - & - \\
\hline Full duplex transmission at 4-wire RS 485 & - & - & - & - & - \\
\hline RS 232 - Interface Input & - & - & - & - & - \\
\hline Voltage level maximum & - & - & - & - & - \\
\hline Data cable length maximum to PC & - & - & - & - & - \\
\hline Data rate \(2400-38400\) baud & - & - & - & - & - \\
\hline Measure Entries /-Channels & 1 & 1,2,3 or 4 & 2/4 & 1 & 1 \\
\hline Voltage strength of entries & 1.000 Veff & 1.000 Veff & - & 1.000 Veff & 1.000 Veff \\
\hline Maximum Cu-sensor wire per channel & 2.500 m & 2.500 m & 2.500 m & - & - \\
\hline Recommended max. Cu-wire lengths / channel & 2.500 m & 2.500 m & 1.000 m & - & - \\
\hline Maximum NiCr-sensor wire per channel & 1.400 m & 1.400 m & \(600 / 1.200 \mathrm{~m}\) & 500 m & 1.300 m \\
\hline Recomm. max. NiCr -wire lengths per channel & 1.200 m & 1.200 m & \(500 / 1.000 \mathrm{~m}\) & 500 m & 1.300 m \\
\hline Isolation Resistance Measurement & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Measuring range & \(10 \mathrm{k} \Omega\) to \(40 \mathrm{M} \Omega\) & \(10 \mathrm{k} \Omega\) to \(2,5 \mathrm{M} \Omega\) & \(20 \mathrm{k} \Omega\) to \(20 \mathrm{M} \Omega\) & \(10 \mathrm{k} \Omega\) to \(10 \mathrm{M} \Omega\) & \(10 \mathrm{k} \Omega\) to \(10 \mathrm{M} \Omega\) \\
\hline Dissolution & \(1 \mathrm{k} \Omega / 10 \mathrm{k} \Omega / 100 \mathrm{k} \Omega\) & \(10 \mathrm{k} \Omega / 100 \mathrm{k} \Omega\) & \(10 \mathrm{k} \Omega\) & \(1 \mathrm{k} \Omega / 10 \mathrm{k} \Omega / 100 \mathrm{k} \Omega\) & \(1 \mathrm{k} \Omega / 10 \mathrm{k} \Omega / 100 \mathrm{k} \Omega\) \\
\hline Measuring voltage maximum & 12 V & 12 V & 10 V & 12 V & 12 V \\
\hline Measuring current maximum & 3 mA & 1 mA & 10 mA & 3 mA & 3 mA \\
\hline Exactness & \(\pm 3 \% \pm 1\) Digit & \(\pm 3 \% \pm 1\) Digit & \(\pm 3 \%\) & \(\pm 3 \% \pm 1\) Digit & \(\pm 3 \% \pm 1\) Digit \\
\hline Alarm threshold value "Isolation" adjustable & \(\checkmark\) & \(\checkmark\) & am Gerät & \(\checkmark\) & \(\checkmark\) \\
\hline Alarm threshold value from/ to in steps & \(10 \mathrm{k} \Omega\) to \(39,9 \mathrm{M} \Omega\) & \(20 \mathrm{k} \Omega\) to \(2,5 \mathrm{M} \Omega\) & \(20 \mathrm{k} \Omega\) to \(2,5 \mathrm{M} \Omega\) & \(200 \mathrm{k} \Omega\) to \(10 \mathrm{M} \Omega\) & \(200 \mathrm{k} \Omega\) to \(10 \mathrm{M} \Omega\) \\
\hline Loop Resistance Measurement & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Measuring range & \(0 \Omega\) to \(8 \mathrm{k} \Omega\) & \(0 \Omega\) to \(8 \mathrm{k} \Omega\) & \(0 \Omega\) to \(7 \mathrm{k} \Omega\) & \(0 \Omega\) to \(2,85 \mathrm{k} \Omega\) & \(0 \Omega\) to \(7,40 \mathrm{k} \Omega\) \\
\hline Dissolution & \(1 \Omega\) & \(100 \mathrm{k} \Omega\) & \(1 \Omega\) & \(1 \Omega\) & \(1 \Omega\) \\
\hline Voltage level maximum & 12 V & 12 V & 10 V & 12 V & 12 V \\
\hline Measuring current maximum & 5 mA & 1 mA & 10 mA & 5 mA & 5 mA \\
\hline Exactness & \(\pm 0,5 \% \pm 1\) Digit & \(\pm 0,5 \% \pm 1\) Digit & 1\% & \(\pm 0,2 \% \pm 1\) Digit & \(\pm 0,2 \% \pm 1\) Digit \\
\hline Alarm threshold value "Loop" adjustable & \(8 \mathrm{k} \Omega\) solid & \(8 \mathrm{k} \Omega\) solid & - & \(8 \mathrm{k} \Omega\) solid & \(8 \mathrm{k} \Omega\) solid \\
\hline Impulse Running Period Measurement & - & - & - & - & - \\
\hline Dissolution / Exactness & - & - & - & - & - \\
\hline Voltage level maximum & - & - & - & - & - \\
\hline Pulse wave shape & - & - & - & - & - \\
\hline Impulse running period adjustable from / to (V/2) & - & \(-\) & - & - & - \\
\hline Direct Voltage Measurement (DC) & - & - & - & \(\checkmark\) & \(\checkmark\) \\
\hline Measuring range & - & - & - & \(\pm 2 \mathrm{~V}\) & \(\pm 2 \mathrm{~V}\) \\
\hline Exactness & - & - & - & 0,01 V & 0,01 V \\
\hline Dissolution & - & - & - & \(\pm 0,6 \%\) & \(\pm 0,6 \%\) \\
\hline Alternating Voltage Measurement (AC) & - & - & - & - & - \\
\hline Measuring range & - & - & - & - & - \\
\hline Exactness & - & - & - & - & - \\
\hline Dissolution & - & - & - & - & - \\
\hline USB-Interface & - & - & - & - & - \\
\hline Power distant supply voltage maximum & - & - & - & - & - \\
\hline Working range power distant supply & - & - & - & - & - \\
\hline Addressability standard/ extended & - & - & - & - & - \\
\hline Radio interface / GSM & - & - & \(\checkmark\) & - & - \\
\hline TC /IP - Ethernet interface & - & - & - & - & - \\
\hline isoplus - Device Type IPS- & HST & ST 3000 & ST 3000 - AUTARK & MSG 500 & MSG 1000 \\
\hline
\end{tabular}

\subsection*{8.6.2 Digital}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline isoplus - Device Type IPS- & Digital-MDS & Digital-Cu-MS & Digital-NiCr-MS & Digital-Cu-MBS & Digital-NiCr-MBS & Digital-UNI-MBS \\
\hline Page & 8.4.2 & 8.4 .2 & 8.4.2 & 8.4 .2 & 8.4 .2 & 8.4 .2 \\
\hline Monitoring manually / automatically & \(-1 \sqrt{(1)}^{(1)}\) & \(-1 \sqrt{(2)}\) & \(-1 / 1{ }^{(2)}\) & 小 \(\sqrt{ }\) & \(\sqrt{1 / \sqrt{1}}\) & 小 1 \\
\hline Detection \(\mathrm{Cu} / \mathrm{NiCr}\) & - & \(\sqrt{1-}\) & -1/ & \(\sqrt{1-}\) & \(-1 / \sqrt{ }\) & \(\sqrt{1 / \sqrt{2}}\) \\
\hline Measurement (\(\mathrm{L} \times \mathrm{B} \times \mathrm{H}\)) in mm & \(150 \times 150 \times 80\) & \(150 \times 300 \times 80\) & \(150 \times 300 \times 80\) & \(410 \times 490 \times 180\) & \(410 \times 490 \times 180\) & \(410 \times 490 \times 180\) \\
\hline Weight in kg & 2,0 & 3,0 & 3,0 & 4,0 without PC & 4,0 without PC & 4,0 without PC \\
\hline Casing & Steel plate & Steel plate & Steel plate & Plastic suitcase & Plastic suitcase & Plastic suitcase \\
\hline Powder coated and dip-impregnated & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & - & - \\
\hline Operating temperature & \(-20^{\circ} \mathrm{C}\) to \(+50^{\circ} \mathrm{C}\) \\
\hline Temperature for guaranteed exactness & - & \(+20^{\circ} \mathrm{C} \pm 8^{\circ} \mathrm{C}\) \\
\hline Store- resp. ambient temperature & \(-10^{\circ} \mathrm{C}\) to \(+50^{\circ} \mathrm{C}\) \\
\hline Humidity until \(+31^{\circ} \mathrm{C}\) & max. 80 \% & max. \(80 \%\) & max. 80 \% & max. \(80 \%\) & max. 80 \% & max. 80 \% \\
\hline Akku-/ Battery Voltage & - & - & - & 8,4 V/1,7 Ah & 8,4 V/1,7 Ah & \(8,4 \mathrm{~V} / 1,7 \mathrm{Ah}\) \\
\hline Akku-/ Battery type & - & - & - & NiCd & NiCd & NiCd \\
\hline \(230 \mathrm{~V} \pm 10 \% / 50 \mathrm{~Hz}\) net voltage & \(\checkmark\) & \(\sqrt{ }\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Euro-plug connection & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Fuse & \(250 \mathrm{~V} / \mathrm{T} 100 \mathrm{~mA}\) \\
\hline Power consumption operation / standby & 2,5 VA/- & 4,5 VA / 2 VA & \(8 \mathrm{VA} / 2 \mathrm{VA}\) & \(9 \mathrm{VA} /-\) & \(9 \mathrm{VA} /-\) & \(9 \mathrm{VA} /-\) \\
\hline Consump. per year at 1 measurement per day & 21 kWh & 17 kWh \\
\hline Protection Class & 1 & I & I & I & I & I \\
\hline Kind of protection & IP 66 & IP 66 & IP 66 & - & - & - \\
\hline Measuring category & - & 1 & 1 & 1 & 1 & 1 \\
\hline Potential Free Relay Contact & Turnkey & - & - & - & - & - \\
\hline Contact carrying capacity & \(48 \mathrm{~V} / 1 \mathrm{~A}\) & - & - & - & - & - \\
\hline RS 485 - Interface Input / Output & \(0 / 1\) & 1/1 & 1/1 & - & - & - \\
\hline Voltage level maximum & \(0 / 5 \mathrm{~V}\) & \(0 / 5 \mathrm{~V}\) & \(0 / 5 \mathrm{~V}\) & - & - & - \\
\hline Data cable length maximum to MS / MDS & 3.000 m & 3.000 m & 3.000 m & - & - & - \\
\hline Data rate 2400-38400 baud & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & - & - \\
\hline Automatic selection & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & - & - \\
\hline Half duplex transmission at 2-wire RS 485 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & - & - \\
\hline Full duplex transmission at 4-wire RS 485 & \(\sqrt{ }\) & \(\checkmark\) & \(\checkmark\) & - & - & - \\
\hline RS 232 - Interface Input & 1 & - & - & 1 & 1 & 1 \\
\hline Voltage level maximum & \(\pm 10 \mathrm{~V}\) & - & - & \(\pm 10 \mathrm{~V}\) & \(\pm 10 \mathrm{~V}\) & \(\pm 10 \mathrm{~V}\) \\
\hline Data cable length maximum to PC & 15 m & - & - & 15 m & 15 m & 15 m \\
\hline Data rate 2400-38400 baud & \(\checkmark\) & - & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Measure Entries /-Channels & - & 2 or 4 & 2 or 4 & 4 & 4 & \(2 \mathrm{Cu}+2 \mathrm{NiCr}\) \\
\hline Voltage strength of entries & - & - & - & - & - & - \\
\hline Maximum Cu-sensor wire per channel & - & 2.500 m & - & 2.500 m & - & 2.500 m \\
\hline Recommended max. Cu-wire lengths / channel & - & 2.500 m & - & 2.500 m & - & 2.500 m \\
\hline Maximum NiCr-sensor wire per channel & - & - & 1.400 m & - & 1.400 m & 1.400 m \\
\hline Recomm. max. NiCr-wire lengths per channel & - & - & 1.200 m & - & 1.200 m & 1.200 m \\
\hline Isolation Resistance Measurement & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Measuring range & - & \(200 \mathrm{k} \Omega\) to \(20 \mathrm{M} \Omega\) & \(1 \mathrm{k} \Omega\) to \(20 \mathrm{M} \Omega\) & \(200 \mathrm{k} \Omega\) to \(20 \mathrm{M} \Omega\) & \(1 \mathrm{k} \Omega\) to \(20 \mathrm{M} \Omega\) & \(1 \mathrm{k} \Omega\) to \(20 \mathrm{M} \Omega\) \\
\hline Dissolution & - & \(1 \mathrm{k} \Omega / 100 \mathrm{k} \Omega\) & \(1 \mathrm{k} \Omega\) & \(1 \mathrm{k} \Omega / 100 \mathrm{k} \Omega\) & \(1 \mathrm{k} \Omega\) & \(1 \mathrm{k} \Omega\) \\
\hline Measuring voltage maximum & - & 5 V & 10 V & 5 V & 10 V & 10 V \\
\hline Measuring current maximum & - & 20 mA \\
\hline Exactness & - & \(\pm 3 \%\) & \(\pm 0,01 \%\) & \(\pm 3 \%\) & \(\pm 0,01\) \% & \(\pm 0,01\) \% \\
\hline Alarm threshold value "Isolation" adjustable & - & - & via control software & - & via control software & via control software \\
\hline Alarm threshold value from / to in steps & - & - & \(1 \mathrm{M} \Omega\) to \(10 \mathrm{M} \Omega\) & - & \(1 \mathrm{M} \Omega\) to \(10 \mathrm{M} \Omega\) & \(1 \mathrm{M} \Omega\) to \(10 \mathrm{M} \Omega\) \\
\hline Loop Resistance Measurement & - & - & \(\checkmark\) & - & \(\checkmark\) & \(\checkmark\) \\
\hline Measuring range & - & - & \(0 \Omega\) to \(8 \mathrm{k} \Omega\) & - & \(0 \Omega\) bis \(8 \mathrm{k} \Omega\) & \(0 \Omega\) bis \(8 \mathrm{k} \Omega\) \\
\hline Dissolution & - & - & \(1 \Omega\) & - & \(1 \Omega\) & \(1 \Omega\) \\
\hline Voltage level maximum & - & - & 10 V & - & 10 V & 10 V \\
\hline Measuring current maximum & - & - & 20 mA & - & 20 mA & 20 mA \\
\hline Exactness & - & - & \(\pm 0,02 \%\) & - & \(\pm 0,02 \%\) & \(\pm 0,02 \%\) \\
\hline Alarm threshold value "Loop" adjustable & - & - & automatic & - & automatic & automatic \\
\hline Impulse Running Period Measurement & - & \(\checkmark\) & - & \(\checkmark\) & - & \(\sqrt{ }\) \\
\hline Dissolution / Exactness & - & 0,5 m/0,2\% & - & 0,5 m / 0,2 \% & - & 0,5 m / 0,2 \% \\
\hline Voltage level maximum & - & \(0 / 5 \mathrm{~V}\) to \(270 \Omega\) & - & \(0 / 5 \mathrm{~V}\) to \(270 \Omega\) & - & \(0 / 5 \mathrm{~V}\) to \(270 \Omega\) \\
\hline Pulse wave shape & - & & - & & - & \\
\hline Impulse running period adjustable from / to (\(/ 2 / 2\)) & - & 90 to \(150 \mathrm{~m} / \mathrm{\mu s}\) & \(-\) & 90 to \(150 \mathrm{~m} / \mathrm{\mu s}\) & - & 90 to \(150 \mathrm{~m} / \mu \mathrm{s}\) \\
\hline Direct Voltage Measurement (DC) & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Measuring range & - & \(\pm 2 \mathrm{~V}\) \\
\hline Exactness & - & \(0,01 \mathrm{~V}\) & 0,01 V & 0,01 V & 0,01 V & 0,01 V \\
\hline Dissolution & - & \(\pm 3 \%\) & \(\pm 0,2 \%\) & \(\pm 3,0 \%\) & \(\pm 0,2 \%\) & \(\pm 0,2 \%\) \\
\hline Alternating Voltage Measurement (AC) & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Measuring range & - & 2 Vss \\
\hline Exactness & - & \(\pm 3 \%\) & \(\pm 0,2 \%\) & \(\pm 3,0 \%\) & \(\pm 0,2 \%\) & \(\pm 0,2 \%\) \\
\hline Dissolution & - & \(0,01 \mathrm{~V}\) & 0,01 V & \(0,01 \mathrm{~V}\) & 0,01 V & 0,01 V \\
\hline USB - Interface & \(\checkmark /\) via adapter & - & - & \(\sqrt{ }\) via adapter & V/ via adapter & \(\sqrt{ } /\) via adapter \\
\hline Power distant supply voltage maximum & - & - & - & - & & - \\
\hline Working range power distant supply & - & - & - & - & - & - \\
\hline Addressability standard/extended & - & 16-/32-fold & 16-/32-fold & 16-fold & 16-fold & 16-fold \\
\hline Radio interface / GSM & - & - & - & - & - & - \\
\hline TC / IP - Ethernet interface & - & possible & possible & - & - & - \\
\hline isoplus - Device Type IPS- & Digital-MDS & Digital-Cu-MS & Digital-NiCr-MS & Digital-Cu-MBS & Digital-NiCr-MBS & Digital-UNI-MBS \\
\hline
\end{tabular}

\section*{8 LEAK DETECTING}
8.6 Technical Data
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline isoplus - Device Type IPS- & Digital-Cu-KMS & Digital-NiCr-KMS & Digital-TV & Digital-MODEM & Digital-PFA & Digital-FSV \\
\hline Page & 8.4 .2 & 8.4 .2 & 8.5 .5 & 8.5 .5 & 8.5 .5 & 8.5.5 \\
\hline Monitoring manually / automatically & -1/ & -1/ & - & - & \(-/ \sqrt{ }{ }^{(1)}\) & - \\
\hline Detection \(\mathrm{Cu} / \mathrm{NiCr}\) & \(1 /-\) & \(-1 /\) & - & - & - & - \\
\hline Measurement (\(\mathrm{L} \times \mathrm{B} \times \mathrm{H}\)) in mm & \(150 \times 300 \times 80\) & \(150 \times 300 \times 80\) & \(150 \times 150 / 300 \times 80\) & \(150 \times 150 \times 80\) & \(150 \times 150 \times 80\) & \(150 \times 150 \times 80\) \\
\hline Weight in kg & 3,0 & 3,0 & 2,0 / 3,0 & 2,0 & 2,0 & 2,0 \\
\hline Casing & Steel plate \\
\hline Powder coated and dip-impregnated & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Operating temperature & \(-20^{\circ} \mathrm{C}\) to \(+50^{\circ} \mathrm{C}\) \\
\hline Temperature for guaranteed exactness & \(+20^{\circ} \mathrm{C} \pm 8^{\circ} \mathrm{C}\) & \(+20^{\circ} \mathrm{C} \pm 8^{\circ} \mathrm{C}\) & - & & - & \\
\hline Store-resp. ambient temperature & \(-10^{\circ} \mathrm{C}\) to \(+50^{\circ} \mathrm{C}\) \\
\hline Humidity until \(+31^{\circ} \mathrm{C}\) & max. 80 \% & max. \(80 \%\) & max. 80 \% & max. 80 \% & max. 80 \% & max. \(80 \%\) \\
\hline Akku-/ Battery Voltage & - & - & - & - & - & - \\
\hline Akku-/ Battery type & - & - & - & - & - & - \\
\hline \(230 \mathrm{~V} \pm 10 \% / 50 \mathrm{~Hz}\) net voltage & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\sqrt{ }\) & \(\sqrt{ }\) \\
\hline Euro-plug connection & \(\checkmark\) & 1 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 1 \\
\hline Fuse & \(250 \mathrm{~V} / \mathrm{T} 100 \mathrm{~mA}\) \\
\hline Power consumption operation / standby & 4,5 VA / 2 VA & \(8 \mathrm{VA} / 2 \mathrm{VA}\) & 2,5 VA/- & \(4 \mathrm{VA} /\) - & 2,5 VA / - & \(10 \mathrm{VA} /-\) \\
\hline Consump. per year at 1 measurement per day & 17 kWh & 17 kWh & 21 kWh & 15 kWh & 17 kWh & 30 kWh \\
\hline Protection Class & I & 1 & 1 & I & 1 & 1 \\
\hline Kind of protection & IP 66 \\
\hline Measuring category & 1 & 1 & - & - & - & - \\
\hline Potential Free Relay Contact & Turnkey & Turnkey & - & - & Turnkey & - \\
\hline Contact carrying capacity & \(48 \mathrm{~V} / 1 \mathrm{~A}\) & \(48 \mathrm{~V} / 1 \mathrm{~A}\) & - & - & \(48 \mathrm{~V} / 1 \mathrm{~A}\) & - \\
\hline RS 485 - Interface Input / Output & - & - & 1/1 bis 6 & \(0 / 1\) & \(0 / 1\) & - \\
\hline Voltage level maximum & - & - & \(0 / 5 \mathrm{~V}\) & \(0 / 5 \mathrm{~V}\) & \(0 / 5 \mathrm{~V}\) & - \\
\hline Data cable length maximum to MS / MDS & - & - & 3.000 m & 3.000 m & 3.000 m & - \\
\hline Data rate 2400-38400 baud & - & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - \\
\hline Automatic selection & - & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - \\
\hline Half duplex transmission at 2-wire RS 485 & - & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - \\
\hline Full duplex transmission at 4-wire RS 485 & - & - & \(\sqrt{ }\) & \(\checkmark\) & \(\checkmark\) & - \\
\hline RS 232 - Interface Input & 1 & 1 & - & - & 1 & - \\
\hline Voltage level maximum & \(\pm 10 \mathrm{~V}\) & \(\pm 10 \mathrm{~V}\) & - & - & \(\pm 10 \mathrm{~V}\) & - \\
\hline Data cable length maximum to PC & 15 m & 15 m & - & - & 15 m & - \\
\hline Data rate 2400-38400 baud & \(\checkmark\) & \(\checkmark\) & - & - & \(\checkmark\) & - \\
\hline Measure Entries /-Channels & 2 or 4 & 2 or 4 & - & - & - & - \\
\hline Voltage strength of entries & - & - & - & - & - & - \\
\hline Maximum Cu -sensor wire per channel & 2.500 m & - & - & - & - & - \\
\hline Recommended max. Cu-wire lengths / channel & 2.500 m & - & - & - & - & - \\
\hline Maximum NiCr-sensor wire per channel & - & 1.400 m & - & - & - & - \\
\hline Recomm. max. NiCr-wire lengths per channel & - & 1.200 m & - & - & - & - \\
\hline Isolation Resistance Measurement & \(\checkmark\) & \(\checkmark\) & - & - & - & - \\
\hline Measuring range & \(200 \mathrm{~K} \Omega\) to \(20 \mathrm{M} \Omega\) & \(1 \mathrm{k} \Omega\) to \(20 \mathrm{M} \Omega\) & - & - & - & - \\
\hline Dissolution & \(1 \mathrm{k} \Omega / 100 \mathrm{k} \Omega\) & \(1 \mathrm{k} \Omega\) & - & - & - & - \\
\hline Measuring voltage maximum & 5 V & 10 V & - & - & - & - \\
\hline Measuring current maximum & 20 mA & 20 mA & - & - & - & - \\
\hline Exactness & \(\pm 3 \%\) & \(\pm 0,01 \%\) & - & - & - & - \\
\hline Alarm threshold value "Isolation" adjustable & - & via control software & - & - & - & - \\
\hline Alarm threshold value from / to in steps & - & \(1 \mathrm{M} \Omega\) to \(10 \mathrm{M} \Omega\) & - & - & - & - \\
\hline Loop Resistance Measurement & - & \(\checkmark\) & - & - & - & - \\
\hline Measuring range & - & \(0 \Omega\) to \(8 \mathrm{k} \Omega\) & - & - & - & - \\
\hline Dissolution & - & \(1 \Omega\) & - & - & - & - \\
\hline Voitage level maximum & - & 10 V & - & - & - & - \\
\hline Measuring current maximum & - & 20 mA & - & - & - & - \\
\hline Exactness & - & \(\pm 0,02 \%\) & - & - & - & - \\
\hline Alarm threshold value "Loop" adjustable & - & automatic & - & - & - & - \\
\hline Impulse Running Period Measurement & \(\checkmark\) & - & - & - & - & - \\
\hline Dissolution / Exactness & 0,5 m / 0,2\% & - & - & - & - & - \\
\hline Voltage level maximum & \(0 / 5 \mathrm{~V}\) to \(270 \Omega\) & - & - & - & - & - \\
\hline Pulse wave shape & & - & - & - & - & - \\
\hline Impulse running period adjustable from / to (V/2) & 90 to \(150 \mathrm{~m} / \mathrm{ms}^{\text {s }}\) & \(-\) & - & - & - & - \\
\hline Direct Voltage Measurement (DC) & \(\checkmark\) & \(\checkmark\) & - & - & - & - \\
\hline Measuring range & \(\pm 2 \mathrm{~V}\) & \(\pm 2 \mathrm{~V}\) & - & - & - & - \\
\hline Exactness & 0,01 V & 0,01 V & - & - & - & - \\
\hline Dissolution & \(\pm 3 \%\) & \(\pm 0,2 \%\) & - & - & - & - \\
\hline Alternating Voltage Measurement (AC) & \(\checkmark\) & \(\checkmark\) & - & - & - & - \\
\hline Measuring range & 2 Vss & 2 Vss & - & - & - & - \\
\hline Exactness & \(\pm 3 \%\) & \(\pm 0,2 \%\) & - & - & - & - \\
\hline Dissolution & \(0,01 \mathrm{~V}\) & 0,01 V & - & - & - & - \\
\hline USB - Interface & \(\sqrt{ } /\) via adapter & \(\sqrt{ } /\) via adapter & - & - & - & - \\
\hline Power distant supply voltage maximum & - & - & - & - & - & 30 V \\
\hline Working range power distant supply & - & - & - & - & - & ca. 1.800 m \\
\hline Addressability standard/extended & 16-/32-fold & 16-/32-fold & - & - & - & - \\
\hline Radio interface / GSM & - & - & - & - & - & - \\
\hline TC / IP - Ethernet interface & - & - & - & - & - & - \\
\hline isoplus - Device Type IPS- & Digital-Cu-KMS & Digital-NiCr-KMS & Digital-TV & Digital-MODEM & Digital-PFA & Digital-FSV \\
\hline
\end{tabular}
9.1 General
9.1.1 Explanation to Underground Work.. 9/1
9.2 Pipe Trench - Rigid Compound Systems Single Pipe
9.2.1 Trench Depth Main Line \(9 / 2\)
9.2.2 Trench Depth Branch Line \(9 / 3\)
9.2.3 Trench Width Standard 9/4
9.2.4 Trench Width Expansion Pads Area 9/5
9.3 Pipe Trench - Rigid Compound Systems Double Pipe
9.3.1 Trench Depth / Trench Width \(9 / 6\)
9.4 Pipe Trench - Flexible Compound Systems
9.4.1 Trench Depth / Trench Width \(9 / 7\)
9.5 Bedding
9.5.1 Sand Bed / Sand Structure / Limit of Grading Curve / Grain Size Distribution.. 9/8-9
9.6 Re-Filling
9.6.1 Re-Filling 9 / 10
9.6.2 Minimum Covering Height. \(9 / 11\)
9.6.3 Maximum Covering Height. 9/12
9.6.4 Load Distributing Plate. 9/13
9.7 Check List for Underground Work
9.7.1 Building Site - Quality Assurance 9/14

\subsection*{9.1 General}

\subsection*{9.1.1 Explanation to Underground Work}

Excavation works have to be carried out corresponding to the general valid guidelines and standards for civil underground engineering. Parallel the communal different additional conditions as well as the AGFW-guidelines of the FW 401 regulations - part 12 have to be considered.

The pipe trenches have to be excavated by a competent civil underground engineering company acc. to DIN 18300, DIN EN 805, DIN EN 1610 and DIN 4124 and re-filled again acc. to section 3.09 and 3.11 of standard DIN 18300. Concerning the width of the trench section 5.2 of DIN 4124 has to be considered.

Whether pipe trenches should be scarped and at which depth they have to be constructed is also mentioned in standard DIN 4124 section 4.1 to 4.3 , as well as the scarping angles for the different soil characteristics.

The laying depth respectively pipe-crown-covering height according to the projecting work and pipestatic has strictly to be meet. Section DIN EN 1610 will describe the structure of trench-sole. The total length of the sole has to be carried out stable and stone-free.

In order to secure the quality of the total system, the pipe layer will be responsible for draining the pipe trenches and to keep them free until all insulation works at the welding spots will be finished, according to DIN EN 1610.

Contracted pipe trenches have to be shovelled free manually. The quality of all works and the expected life time of a district heating line are depending in a high degree from the excavation of the trenches in accordance to the DIN standard.

The measures of length of the isoplus-pipeline design are valid as axis measure for the trench excavation. The following described civil underground information has been especially proved practically, without claim for completeness. In case of special situations we ask you to contact the isoplus-assembling- respectively design engineers, who will work out special problem-solutions.

\subsection*{9.2 Pipe Trench - Rigid Compound Systems Single Pipe}

\subsection*{9.2.1 Trench Depth Main Line}

The soil-depth [T] of the pipe trench will be calculated from the given covering height [\(\left.\ddot{U}_{H}\right]\), the PEHD-jacket-pipe diameter \(\left[D_{a}\right]\) and the height of the pipe support respectively the sand bed. The standard covering height for pipe construction is \(0,80 \mathrm{~m}\) (= frost-depth) up to \(1,20 \mathrm{~m}\).

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
Jacket-pipe- \(\varnothing\) \\
\(\mathbf{\mathbf { D } _ { \mathbf { a } }}\) \\
in \(\mathbf{m m}\)
\end{tabular} & 65 & 75 & 90 & 110 & 125 & 140 & 160 & 180 & 200 & 225 & 250 & 280 & 315 & 355 \\
\hline \begin{tabular}{c}
Covering height \\
ÜH \\
in \(\mathbf{m}\)
\end{tabular} & 0,80 & 0,80 & 0,80 & 0,80 & 0,80 & 0,80 & 0,80 & 0,80 & 0,80 & 0,80 & 0,80 & 0,80 & 0,80 & 0,80 \\
\hline \begin{tabular}{c}
Soil-depth \\
\(\mathbf{T}\) \\
in \(\mathbf{m}\)
\end{tabular} & 0,97 & 0,98 & 0,99 & 1,01 & 1,03 & 1,04 & 1,06 & 1,08 & 1,10 & 1,13 & 1,15 & 1,18 & 1,22 & 1,26 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Jacket-pipe- } \varnothing \\
\mathbf{D}_{a} \\
\text { in } \mathrm{mm}
\end{gathered}
\] & 400 & 450 & 500 & 560 & 630 & 670 & 710 & 800 & 900 & 1000 & 1100 & 1200 & 1300 & \\
\hline Covering height \(\ddot{U}_{\mathrm{H}}\) in m & 0,80 & 0,80 & 0,80 & 0,80 & 0,90 & 0,90 & 1,00 & 1,00 & 1,20 & 1,20 & 1,20 & 1,20 & 1,20 & \[
\begin{aligned}
& \underline{3} \\
& \hline \underline{O} \\
& \stackrel{0}{0}
\end{aligned}
\] \\
\hline Soil-depth T in \(m\) & 1,30 & 1,35 & 1,40 & 1,46 & 1,63 & 1,67 & 1,81 & 1,90 & 2,20 & 2,30 & 2,40 & 2,50 & 2,60 & \\
\hline
\end{tabular}

The value mentioned in the table are valid for the given covering heights and an assembling support of \(0,10 \mathrm{~m}\). In case of other covering heights the difference value of the mentioned covering height [\(\mathrm{U}_{\mathrm{H}}\)] has to be added or subtracted from the depth [T].

\title{
9 HANDLING UNDERGROUND WORK
}

\subsection*{9.2 Pipe Trench - Rigid Compound Systems Single Pipe}

\subsection*{9.2.2 Trench Depth Branch Line}

Due to manufacturing technical construction heights \([\mathrm{h}]\) at \(45^{\circ} \mathrm{T}\)-branches and at parallel-branches the soil-depth [\(T\)] will change at the branch lines in correspondence with the difference measure \(\left[D_{T}\right]\). Depending from installation position of the branch, topside or bottom side the measure \(D_{T}\) has to be added or subtracted from the main line depth [T].

The exact measure \([\mathrm{h}]\) can be seen from chapter 2.2.8

\section*{\(45^{\circ}\) T-Branch}

\section*{Parallel-Branch}

The difference measure \(\left[D_{T}\right]\) will be calculated acc. to the following formula:
Exit topside
\(\Rightarrow\)
\(D_{T}=D_{a} 1+h\)
[m]
Exit downside
\(\Rightarrow \quad D_{T}=D_{a} 2+h\)
[m]

9 HANDLING UNDERGROUND WORK

\subsection*{9.2 Pipe Trench - Rigid Compound Systems Single Pipe}

\subsection*{9.2.3 Trench Width Standard}

The soil-width [B] will be calculated in trench sections without expansion pads and without additional foreign lines like i. e. a parallel water line, the PEHD-jacket-pipe diameter \(\left[\mathrm{D}_{\mathrm{a}}\right]\) and the minimum assembling distance \([\mathrm{M}]\) depending from dimensions.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Jacket-pipe- \(\varnothing\) \(D_{a}\) in mm & 65 & 75 & 90 & 110 & 125 & 140 & 160 & 180 & 200 & 225 & 250 & 280 & 315 & 355 \\
\hline \begin{tabular}{l}
Min. assembl. distance \\
M \\
in mm
\end{tabular} & 100 & 100 & 150 & 150 & 150 & 150 & 200 & 200 & 200 & 200 & 200 & 300 & 300 & 300 \\
\hline Soil-width B in \(m\) & 0,43 & 0,45 & 0,63 & 0,67 & 0,70 & 0,73 & 0,92 & 0,96 & 1,00 & 1,05 & 1,10 & 1,46 & 1,53 & 1,61 \\
\hline ```
Jacket-pipe-\varnothing
 D
 in mm
``` & 400 & 450 & 500 & 560 & 630 & 670 & 710 & 800 & 900 & 1000 & 1100 & 1200 & 1300 & \\
\hline \begin{tabular}{l}
Min. assembl. distance \\
M \\
in mm
\end{tabular} & 400 & 400 & 400 & 500 & 500 & 600 & 600 & 700 & 700 & 800 & 800 & 900 & 900 & \[
\begin{aligned}
& \frac{2}{2} \\
& \hline \frac{9}{9} \\
& \text { O}
\end{aligned}
\] \\
\hline Soil-width B in m & 2,00 & 2,10 & 2,20 & 2,62 & 2,76 & 3,14 & 3,22 & 3,70 & 3,90 & 4,40 & 4,60 & 5,10 & 5,30 & - \\
\hline
\end{tabular}

The mentioned width \([B]\) in the table is valid for two pipes of the same PEHD-jacket-pipe diameter. Because of this a sufficient assembling width for post insulation at the connection couplers as well as for the sand bed will be guaranteed. At the areas of the expansion pads the values according to chapter 9.2.4 will be relevant.

In case that coupler-constructions like i. e. fitted electrical couplers will be installed, which are not included in the isoplus-performance range, the conditions of the corresponding supplier will be valid. For other applications, like i. e. in case of several pipes \([x]\) the sole width \([B]\) will be calculated according to the following formula:
\(B=x \cdot D_{a}+(x+1) \cdot M \quad[m]\)

\title{
9 HANDLING UNDERGROUND WORK
}

\subsection*{9.2 Pipe Trench - Rigid Compound Systems Single Pipe}

\subsection*{9.2.4 Trench Width Expansion Pads Area}

At the area of expansion pads at L-, Z- or U-elbows as well as at \(45^{\circ} \mathrm{T}\) - and Parallel-branches the sole width \([\mathrm{B}]\) and the minimum distance \([\mathrm{M}]\) has to be enlarged. The widening is depending from the thickness of the expansion pads \(\left[\mathrm{DP}_{\mathrm{s}}\right]\) mentioned in the isoplus-trench-designs. The length of the enlargement is depending from the length of the given expansion pads [ \(\left.D P_{\mathrm{L}}\right]\).
\begin{tabular}{|c|c|c|}
\hline DP \({ }_{\text {L }}\) & = & Expansion pad length acc. to trench-design [m] \\
\hline \(\mathrm{M}_{\mathrm{x}}\) & = & Minimum distance \([\mathrm{M}]+2\) - Expansion pad thickness \(\left[\mathrm{DP}_{\mathrm{s}}\right]\) acc. to trench design [mm] \\
\hline \(\mathrm{M}_{\mathrm{y}}\) & = & Minimum distance \([\mathrm{M}]+1\) - Expansion Pad thickness [DP \({ }_{\mathrm{s}}\) ] acc. to trench design [mm] \\
\hline \(B_{X}\) & = & Total soil-width [m] \\
\hline
\end{tabular}

L-Elbow


\section*{Parallel-Branch}


\subsection*{9.2 Pipe Trench - Rigid Compound Systems Double Pipe}

\subsection*{9.3.1 Trench Depth / Trench Width}

\section*{Trench Depth}

The soil-depth [T] of the pipe trench will be calculated from the given covering height [ \(\mathrm{U}_{\mathrm{H}}\) ], the PEHD-jacketpipe diameter \(\left[D_{a}\right]\) and the height of the pipe support respectively the sand bed.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\mathbf{D}_{\mathbf{a}}\) in mm & 125 & 140 & 160 & 180 & 200 & 225 & 250 & 280 & 315 & 355 & 400 & 450 & 500 & 560 & 630 \\
\hline \begin{tabular}{c} 
Soil-depth \\
T in m
\end{tabular} & 0,825 & 0,840 & 0,860 & 0,880 & 0,900 & 0,925 & 0,950 & 0,980 & 1,015 & 1,055 & 1,100 & 1,150 & 1,200 & 1,260 & 1,330 \\
\hline
\end{tabular}

The value mentioned in the table are valid for the given covering heights of \(0,60 \mathrm{~m}\) and an assembling support of \(0,10 \mathrm{~m}\). In case of another covering height the difference-value to \(\ddot{U}_{\mathrm{H}}=0,60 \mathrm{~m}\) has to be added or to subtract from the depth [T].

\section*{Trench Width}

The soil-width \([B]\) will be calculated from PEHD-jacket-pipe width \(\left[D_{a}\right]\) and the minimum assembling distance \([M]\), depending from dimension.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\mathbf{D}_{\text {a }}\) in mm & 125 & 140 & 160 & 180 & 200 & 225 & 250 & 280 & 315 & 355 & 400 & 450 & 500 & 560 \\
\hline \begin{tabular}{c} 
Min. assembl. dist. \\
M in mm
\end{tabular} & 150 & 150 & 150 & 150 & 150 & 200 & 200 & 200 & 200 & 200 & 200 & 300 & 300 & 300 \\
\hline \begin{tabular}{c} 
Soil-width \\
B in m
\end{tabular} & 0,425 & 0,440 & 0,460 & 0,480 & 0,500 & 0,625 & 0,650 & 0,680 & 0,715 & 0,755 & 0,800 & 1,050 & 1,100 & 1,160 \\
\hline
\end{tabular}

Due to the minimum values a sufficient assembling-width for post insulation at the connection couplers as well as for preparing the sand-bed will be guaranteed. In case that expansion pads will be required at branches or at direction-changes, the soil-width [B] has to be enlarged about 80 mm at a padding thickness of 40 mm as well as about 160 mm at a padding thickness of 80 mm . The values of the table are valid for an isoplus-double pipe. In case that more pipes \([\mathrm{x}]\) will be laid, the soil-width \([\mathrm{B}]\) will be calculated according to the following formula:
\(B=x \cdot D_{a}+(x+1) \cdot M \quad[m]\)

\title{
9 HANDLING UNDERGROUND WORK
}
9.4 Pipe Trench - Flexible Compound Systems

\subsection*{9.4.1 Trench Depth / Trench Width}

\section*{Trench Depth}

The soil-depth [T] of the pipe trench will be calculated from the given covering height [ \(\mathrm{U}_{\mathrm{H}}\) ], the PEHD-jacket-pipe diameter \(\left[\mathrm{D}_{\mathrm{a}}\right]\) and the height of the pipe support respectively the sand bed. The standard covering height for isoplus flex pipes is \(0,40 \mathrm{~m}\). The frost depth in Central Europe is \(0,80 \mathrm{~m}\).

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\mathbf{D}_{\mathbf{a}}\) in mm & 65 & 75 & 90 & 110 & 125 & 140 & 160 & 180 & 225 & 250 \\
\hline \begin{tabular}{c} 
Soil-width \\
\(\mathbf{T}\) in m
\end{tabular} & 0,565 & 0,575 & 0,590 & 0,610 & 0,625 & 0,640 & 0,660 & 0,680 & 0,725 & 0,750 \\
\hline
\end{tabular}

The values mentioned in the table are valid for the given covering heights and a sand-bed respectively assembling support of \(0,10 \mathrm{~m}\). In case of other covering heights the difference value of the mentioned covering height \(\ddot{U}_{\mathrm{H}}=0,40 \mathrm{~m}\) has to be added or subtracted from the depth [T].

\section*{Trench Width}

The soil-width \([B]\) will be calculated in trench sections without expansion pads and without additional foreign lines like i. e. a parallel water line, the PEHD-jacket-pipe diameter \(\left[\mathrm{D}_{\mathrm{a}}\right]\) and the minimum assembling distance \([\mathrm{M}]\) depending from dimensions. In case that expansion pads will be required for isoflex or isocu at alterations of direction or at branches, the distance [ \(M\) ] has to be enlarged about 80 mm .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\mathbf{D}_{\mathbf{a}}\) in mm & 65 & 75 & 90 & 110 & 125 & 140 & 160 & 180 & 225 & 250 \\
\hline \begin{tabular}{c} 
Min. assembl. dist. \\
\(\mathbf{M}\) in \(\mathbf{m m}\)
\end{tabular} & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 150 & 150 \\
\begin{tabular}{c} 
Soil-width \\
\(\mathbf{B}\) in \(\mathbf{m}\)
\end{tabular} & 0,430 & 0,450 & 0,480 & 0,520 & 0,550 & 0,580 & 0,620 & 0,660 & 0,900 & 0,950 \\
\hline
\end{tabular}

The mentioned width \([B]\) in the table is valid for two pipes of the same PEHD-jacket-pipe diameter. For the pipe laying of double pipes this value will be calculated as follows:
\(\mathrm{B}_{\text {Double pipe }}=\mathrm{D}_{\mathrm{a}}+2 \cdot \mathrm{M}[\mathrm{m}]\)
For other applications, like i. e. in case of several pipes \([x]\) the sole width \([B]\) will be calculated according to the following formula:
\[
B=x \cdot D_{a}+(x+1) \cdot M \quad[m]
\]

\subsection*{9.5.1 Sand Bed / Sand Structure / Limit of Grading Curve / Grain Size Distribution}

\section*{Sand Bed}

After the insulation and sealing works as well as after assembling of expansion pads, all kind of test procedures which are belonging to the performance range have to be carried out. Especially the following points have to be considered:
\(\Rightarrow\) The pipeline guidance corresponds with the isoplus-trench-design
\(\Rightarrow\) The static calculated covering heights have been strictly considered
\(\Rightarrow\) Contracted soil, stones or/and foreign particles have to be removed from the area of the sandbed respectively from the pipe area
\(\Rightarrow\) The expansion pads are assembled in the given length and thickness and against soil an pressure
\(\Rightarrow\) All couplers are foamed and recorded, the ducts to the buildings and houses are closed
\(\Rightarrow\) In case of a thermal prestressing the given expansion movements and the corresponding temperatures have been reached and recorded
\(\Rightarrow\) The monitoring system has been functionally tested and recorded
Before the sand-bed will be established, the trench has to be inspected and approved concerning the mentioned points by a responsible site-manager.


Thereafter the preinsulated jacket-pipe PJP, have to be re-filled carefully with at least 10 cm sand layers with a grain size of 0-4 mm (class NS 0/2), see following page. After that the sand should be compressed manually. The areas between the pipes and also at the pipe gussets should be especially considered, in order to avoid hollow spaces. These spaces have to be compressed and sealed especially in order to avoid not admissible settlements or movements later on. During these works eventually used supports have to be removed, in case that it will be no sand-sacks, which have to be cut-off, or hard foam supports.

In case that a washing away of the bedded sand cannot be excluded during the underground construction works, due to unfavourable conditions like heavy rain, the bedding area has to be covered by use of geo-textiles. This should be generally considered at locations on a slope respectively at precipitous inclines because of the draining effect of the trench profile. Because of the water quantity the water content of the sand will be above the optimum value of the proctor-curve, and will not fulfill the compressing degree, \(\mathrm{D}_{\mathrm{Pr}} \geq 97 \%\).

\title{
9 HANDLING UNDERGROUND WORK
}

\subsection*{9.5 Bedding}

Here, the grain sizes are separated so that the target friction values at PJP are not achievable and the so-called „tunnel effect" kicks in. For this reason, among other things, slurrying the sand is not classified as state-of-the-art in accordance with AGFW FW 401 - Part 12.

In the pipe zone, special requirements are placed on the friction between PEHD material and the quality of the sand. The resulting permanent friction conditions form the decisive basis for verification of the static and dynamic use of the PJP.
Should flowable bedding materials, such as self-stabilizing sand mixtures, SSM, or soil mortar be used, note that no long-term experience is available in terms of removing these with a simple device. There are no permanent and safeguarded test results available in practice for mechanical characteristics such as long-term friction behavior. General approval of these filling materials as road construction material has not yet been obtained through the German Forschungsgesellschaft für Straßen- und Verkehrswesen, FGSV (Resebend Association for Roads and Transportation). These have not been taken into account in the pipe static basics in accordance with AGFW FW 401 - Parts \(10+11\).

Replacement materials such as foam glass granules, crushed sand, recycled material, etc. are fundamentally not permitted in the pipe zone as bedding material or sand bed material.

\section*{Sand Structure in the Bedding Area}
\begin{tabular}{lll} 
Sand bed height & \(\Rightarrow\) & all sides at least 100 mm \\
Kind of sand & \(\Rightarrow\) & Not binding medium up to rough sand \\
Grainsize & \(\Rightarrow\) & \(0-4 \mathrm{~mm}\) \\
Kind of Grain & \(\Rightarrow\) & round edged \\
Classification & \(\Rightarrow\) & Nature sand, NS 0/2 \\
Norm & \(\Rightarrow\) & \begin{tabular}{l} 
DIN 12620 resp. TL Min-StB (Technical delivery conditions \\
\end{tabular} \\
& & for mineral materials in the road building)
\end{tabular}

Limit of Grading Curve acc. DIN EN 12620 of grain class 0/2


Grain Size Distribution acc. to DIN EN 12620
\begin{tabular}{llll} 
Rate of passage to \(0,063 \mathrm{~mm}\) & \(\Rightarrow\) & \(\pm 5 \%\) & Rate of passage to \(1,0 \mathrm{~mm}\) \\
Rate of passage to \(0,250 \mathrm{~mm}\) & \(\Rightarrow\) & \(\pm 25 \%\) & Rate of passage to \(2,0 \mathrm{~mm}\)
\end{tabular}

9 HANDLING UNDERGROUND WORK
9.6 Re-Filling

\subsection*{9.6.1 Re-Filling}

After finishing of the sand bed the trench can be filled with excavation material. The compressing should be carried out in layers. Rough and peaked stones should be removed. According to ZTV E - StB rough-graining soils up to a grain size of 20 mm have to be used as filling soil outside of the line area. Generally re-filling material according to DIN 18196, compressing class V 1 has to be used.

According to ZTV A - StB insensitive soils against water and weather conditions have to be used for the trench filling of the filling area and the 20 cm filling-layer. In connection to this the ZTV E - StB allows also industrial recycling and recycling components, providing that the defined requirements like i.e. environment compatibility regarding water resources policy, compatibility with other building materials etc. as well as the requirements concerning compressing will be meet.


Filling and compressing of the trench has to be carried out simultaneously on both sides of the pipes. After filling of the 20 cm filling layer compressing machines like i. e. a surface compressor or an explosionram (weight up to 100 kg ) may be used. The allowed area load is \(40 \mathrm{~N} / \mathrm{cm}^{2}\) respectively 4 \(\mathrm{kg} / \mathrm{cm}^{2}\) at a cold pipeline. In case that the pipeline should be already in operation, the area load will reduce to maximum \(20 \mathrm{~N} / \mathrm{cm}^{2}\) respectively \(2 \mathrm{~kg} / \mathrm{cm}^{2}\).
Further layers of 20-30 cm will be put on the first layer and a covering layer will finish the filling procedure. The requirements of the "Additional technical contract conditions and guidelines for excavations and soil-works of road constructions", ZTV A and ZTV E, should additional used. The following degrees of compressing [ \(\mathrm{D}_{\mathrm{Pr}}\) ] should be reached in correspondence to ZTV E - StB.


\section*{9 HANDLING UNDERGROUND WORK \\ \subsection*{9.6 Re-Filling}}

\subsection*{9.6.2 Minimum Covering Height / Bridge Class}

The influence of traffic loads on preinsulated jacket-pipes will increase in correspondence with the reducing of the covering height. Therefore the minimum covering heights in dependence of the bridge-classes and dimensions have been investigated and defined by independent material-testinstitutes. Theoretically only extreme slight results could be proved.

In case of a secured superstructure at road construction the wheel load will spread over a larger area, as the wheel load will not effect directly on the filled soil, that means the preinsulated jacket-pipe will be less stressed.

The covering heights mentioned in the table have to be meet due to the danger of beaming and buckling of the preinsulated jacket-pipes, the spade-safety, sucking of vehicles in case of not secured surfaces as well as to the possible exceeding of the admissible ring-bending stress.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Bridge class} & \multicolumn{11}{|c|}{Single pipe Nominal Diameter in DN} \\
\hline & 20-125 & 150 & 200 & 250 & 300 & 350 & 400 & 450 & 500 & 550 & 600-1000 \\
\hline SLW 12 & 0,40 & 0,40 & 0,40 & 0,40 & 0,40 & 0,50 & 0,50 & 0,50 & 0,60 & 0,80 & 1,00 \\
\hline SLW 30 & 0,40 & 0,40 & 0,40 & 0,40 & 0,50 & 0,50 & 0,50 & 0,60 & 0,70 & 0,90 & 1,10 \\
\hline SLW 60 & 0,40 & 0,50 & 0,50 & 0,60 & 0,60 & 0,50 & 0,70 & 0,80 & 0,90 & 1,00 & 1,20 \\
\hline \multirow[t]{2}{*}{Bridge Class} & \multicolumn{9}{|c|}{Double pipe Nominal Diameter resp. type} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{All flex pipe types and dimensions}} \\
\hline & to Dr-80 & \multicolumn{2}{|c|}{Dr-100} & \multicolumn{2}{|r|}{Dr-125} & \multicolumn{2}{|c|}{Dr-150} & \multicolumn{2}{|c|}{Dr-200} & & \\
\hline SLW 12 & 0,40 & \multicolumn{2}{|c|}{0,40} & \multicolumn{2}{|c|}{0,40} & \multicolumn{2}{|c|}{0,40} & \multicolumn{2}{|c|}{0,40} & \multicolumn{2}{|r|}{0,40} \\
\hline SLW 30 & 0,40 & \multicolumn{2}{|c|}{0,40} & \multicolumn{2}{|c|}{0,40} & \multicolumn{2}{|c|}{0,40} & \multicolumn{2}{|c|}{0,50} & \multicolumn{2}{|r|}{0,40} \\
\hline SLW 60 & 0,40 & \multicolumn{2}{|c|}{0,50} & \multicolumn{2}{|c|}{0,50} & \multicolumn{2}{|c|}{0,60} & \multicolumn{2}{|c|}{0,60} & \multicolumn{2}{|r|}{0,40} \\
\hline
\end{tabular}

Covering height in meter [ m ]
For big dimensions additional soil mechanical demonstrations respectively underground engineering static calculations are required. This includes the calculation of the circumference-bendingtension for pipes > DN 500 at heavy load traffic SLW 60, for pipes > DN 350 at railway and at road construction works with covering heights \(<0,80 \mathrm{~m}\). Calculation will be made according to ATVworking regulation A 127.

\section*{Bridge Class acc. to DIN 1072}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Heavy-load traffic} & \multirow[t]{2}{*}{Contract breadth the wheel in cm} & \multicolumn{2}{|l|}{Wheel-load} & \multirow[t]{2}{*}{Radius load-area
in cm} & \multirow[t]{2}{*}{resulting load-area in \(\mathrm{cm}^{2}\)} & \multicolumn{2}{|l|}{calculated pressure [p] of load-area} & \multicolumn{2}{|l|}{resulting aquivalent surface load} \\
\hline & & in kN & in to & & & in \(\mathrm{N} / \mathrm{cm}^{2}\) & in \(\mathrm{kg} / \mathrm{cm}^{2}\) & in \(\mathrm{kN} / \mathrm{m}^{2}\) & to/m \({ }^{2}\) \\
\hline SLW 12 & 30 & 40 & 4,08 & 18 & 1.017,88 & 39,30 & 4,01 & 6,70 & 0,68 \\
\hline SLW 30 & 40 & 50 & 5,10 & 20 & 1.256,64 & 39,79 & 4,06 & 16,70 & 1,70 \\
\hline SLW 60 & 60 & 100 & 10,19 & 30 & 2.827,43 & 35,37 & 3,61 & 33,30 & 3,39 \\
\hline
\end{tabular}

\subsection*{9.6.3 Maximum Covering Height}

The soil-load respectively soil pressure on the preinsulated jacket-pipes will increase in dependence with the increasing pipe-laying depth. Due to the admissible shearing strain respectively transverse stress [ \(\tau_{\text {pUR }}\) ] between PEHD-jacket and PUR-hard foam respectively carrier pipe and foam, the covering height has to be limited, independent from operating temperature and the medium.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[b]{2}{*}{Dimensions carrier pipe}} & \multicolumn{6}{|c|}{Single pipe} & \multicolumn{4}{|c|}{Double pipe} \\
\hline & & & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Jacket-Pipe Outside-
Diameter \(\mathbf{D}_{\mathrm{a}}\)
in mm}} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \hline \text { Maximum admissible } \\
& \text { Covering Height } \ddot{U}_{\mathrm{H}} \\
& \text { in } \mathrm{m}
\end{aligned}
\]}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Jacket-Pipe Outs.-Diameter- \(\varnothing \mathbf{D a}_{\mathbf{a}}\) in mm}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { Max. admissible } \\
\text { Covering Height } \ddot{U}_{\mathrm{H}} \\
\text { in } \mathrm{m}
\end{array}
\]}} \\
\hline Nominal Diameter & \begin{tabular}{l}
Outside- \\
\(\varnothing\)
\end{tabular} & W. thick. & & & & & & & & & & \\
\hline in &  & in mm & \multicolumn{3}{|l|}{Insulation Thickness} & \multicolumn{3}{|l|}{Insulation Thickness} & \multicolumn{2}{|l|}{Insulation Thickness} & \multicolumn{2}{|l|}{Insulation Thickness} \\
\hline DN & in mm & isoplus & Standard & 1x reinf. & 2x reinf. & Standard & 1x reinf. & 2x reinf. & Standard & 1x reinf. & Standard & 1x reinf. \\
\hline 20 & 26,9 & 2,6 & 90 & 110 & 125 & 2,10 & 1,70 & 1,45 & 125 & 140 & 1,70 & 1,50 \\
\hline 25 & 33,7 & 3,2 & 90 & 110 & 125 & 2,65 & 2,15 & 1,85 & 140 & 160 & 1,90 & 1,65 \\
\hline 32 & 42,4 & 3,2 & 110 & 125 & 140 & 2,70 & 2,35 & 2,10 & 160 & 180 & 2,10 & 1,85 \\
\hline 40 & 48,3 & 3,2 & 110 & 125 & 140 & 3,10 & 2,70 & 2,40 & 160 & 180 & 2,40 & 2,15 \\
\hline 50 & 60,3 & 3,2 & 125 & 140 & 160 & 3,40 & 3,00 & 2,60 & 200 & 225 & 2,40 & 2,10 \\
\hline 65 & 76,1 & 3,2 & 140 & 160 & 180 & 3,85 & 3,35 & 2,95 & 225 & 250 & 2,60 & 2,40 \\
\hline 80 & 88,9 & 3,2 & 160 & 180 & 200 & 3,90 & 3,45 & 3,10 & 250 & 280 & 2,70 & 2,40 \\
\hline 100 & 114,3 & 3,6 & 200 & 225 & 250 & 4,00 & 3,50 & 3,15 & 315 & 355 & 2,75 & 2,40 \\
\hline 125 & 139,7 & 3,6 & 225 & 250 & 280 & 4,35 & 3,90 & 3,45 & 400 & 450 & 2,60 & 2,30 \\
\hline 150 & 168,3 & 4,0 & 250 & 280 & 315 & 4,70 & 4,15 & 3,65 & 450 & 500 & 2,70 & 2,40 \\
\hline 200 & 219,1 & 4,5 & 315 & 355 & 400 & 4,80 & 4,25 & 3,70 & 560 & 630 & 2,75 & 2,40 \\
\hline 250 & 273,0 & 5,0 & 400 & 450 & 500 & 4,65 & 4,10 & 3,65 & --- & --- & --- & --- \\
\hline 300 & 323,9 & 5,6 & 450 & 500 & 560 & 4,90 & 4,35 & 3,85 & --- & --- & --- & --- \\
\hline 350 & 355,6 & 5,6 & 500 & 560 & 630 & 4,80 & 4,25 & 3,70 & --- & --- & --- & --- \\
\hline 400 & 406,4 & 6,3 & 560 & 630 & 670 & 4,90 & 4,25 & 3,95 & --- & --- & --- & --- \\
\hline 450 & 457,2 & 6,3 & 630 & 670 & 710 & 4,85 & 4,50 & 4,20 & --- & --- & --- & --- \\
\hline 500 & 508,0 & 6,3 & 670 & 710 & 800 & 5,05 & 4,70 & 4,10 & --- & --- & --- & --- \\
\hline 600 & 610,0 & 7,1 & 800 & 900 & 1000 & 5,00 & 4,35 & 3,80 & --- & --- & --- & --- \\
\hline 700 & 711,0 & 8,0 & 900 & 1000 & --- & 5,10 & 4,50 & --- & --- & --- & --- & --- \\
\hline 800 & 813,0 & 8,8 & 1000 & 1100 & --- & 5,20 & 4,65 & --- & --- & --- & --- & --- \\
\hline 900 & 914,0 & 10,0 & 1100 & 1200 & --- & 5,25 & 4,75 & --- & --- & --- & --- & --- \\
\hline 1000 & 1016,0 & 11,0 & 1200 & 1300 & --- & 5,30 & 4,80 & --- & --- & --- & --- & --- \\
\hline isoflex & 20 & 2,0 & 75 & --- & --- & 1,85 & --- & --- & --- & --- & --- & --- \\
\hline isoflex & 28 & 2,0 & 75 & 90 & --- & 2,65 & 2,20 & --- & 110 & --- & 1,50 & --- \\
\hline isocu & 22 & 1,0 & 65 & --- & --- & 2,40 & --- & --- & 90 & --- & 2,00 & --- \\
\hline isocu & 28 & 1,2 & 75 & --- & --- & 2,65 & --- & --- & 90 & --- & 2,50 & --- \\
\hline \multirow{11}{*}{} & 20 & 2,0 & --- & --- & --- & --- & --- & --- & 75 & --- & 2,20 & --- \\
\hline & 25 & 2,3 & 75 & 90 & --- & 2,35 & 1,95 & --- & 90 & 110 & 2,25 & 1,85 \\
\hline & 32 & 2,9 & 75 & 90 & --- & 3,05 & 2,50 & --- & 110 & 125 & 2,40 & 2,10 \\
\hline & 40 & 3,7 & 90 & 110 & --- & 3,15 & 2,55 & --- & 125 & 140 & 2,55 & 2,35 \\
\hline & 50 & 4,6 & 110 & 125 & --- & 3,20 & 2,80 & --- & 160 & 180 & 2,50 & 2,25 \\
\hline & 63 & 5,8 & 125 & 140 & --- & 3,55 & 3,15 & --- & 180 & --- & 2,75 & --- \\
\hline & 75 & 6,8 & 140 & 160 & --- & 3,80 & 3,30 & --- & --- & --- & --- & --- \\
\hline & 90 & 8,2 & 160 & 180 & --- & 3,95 & 3,50 & --- & --- & --- & --- & --- \\
\hline & 110 & 10,0 & 180 & --- & --- & 4,30 & --- & --- & --- & --- & --- & --- \\
\hline & 125 & 11,4 & 180 & 225 & --- & 4,90 & 3,90 & --- & --- & --- & --- & --- \\
\hline & 160 & 14,6 & 250 & --- & --- & 4,65 & --- & --- & --- & --- & --- & --- \\
\hline
\end{tabular}

ATTENTION: The values mentioned in the table are valid for soils with a specific weight of \(19 \mathrm{kN} / \mathrm{m}^{3}\), an inner soil-friction angle \([\varphi]\) of \(32,5^{\circ}\) and for steel wall thickness according to isoplus, see chapter 2.2 and 2.3. Outside of the expansion pad areas respectively expansion branches, according AGFW FW 401, part 10 and EN 253, admissible shearing strain \(\tau_{\text {PUR }}=\leq \mathbf{0 , 0 4} \mathrm{N} / \mathrm{mm}^{2}\).

\title{
9 HANDLING UNDERGROUND WORK
}

\subsection*{9.6 Re-Filling}

\subsection*{9.6.4 Load Distributing Plate}

In case of lowering the minimum covering height respectively exceeding of the maximum covering height, civil underground technical safety measures have to be considered. These should be suitable to secure the preinsulated jacket-pipes against not admissible overloads of the crown-pressure, maximum \(20 \mathrm{~N} / \mathrm{cm}^{2}\) respectively \(2 \mathrm{~kg} / \mathrm{cm}^{2}\).

As possible load-distributors steel plates which have to be protected against corrosion, or steel-concrete-plates, concrete class B25 can be installed. Both kinds should be at least 100 cm longer as the area of the PJP pipeline which has to be protected. A construction static-engineer has to determine the exact thickness, the reinforcement and the eventual required foundations. Before the execution the approval from the isoplus-design engineers will be required.

\section*{Distributing Plate}

These are used for separating of high lumped loads (traffic loads) in case of lowering of the minimum covering height.
Distributing plates should be wide enough to reach with their load-distributing-angle of \(32,5^{\circ}\) the area outside of the preinsulated jacket-pipe.


\section*{Recover Plate}

Recovering plates will be suitable for separating of high area-loads (traffic- and soil-loads) in case of exceeding of the maximum covering height. These should bear solid at both sides, that means along the trench length on grown ground. In case that this cannot be guaranteed, additional continuousor point-footing have to be established. The plate should be at least 50 cm wider than the area which has to be covered.


9 HANDLING UNDERGROUND WORK 9.7 Check List for Underground Work

\subsection*{9.7.1 Building Site - Quality Assurance}

For building site it will be necessary to provide a guideline for a quality performance of the single working steps, in order to reach an optimization of the installing situation for preinsulated jacket pipes. This guideline will be valid in the same manner for civil underground engineering, pipe layer and pipe manufacturer. The most important test parameters are listed chronologically in the following table in accordance with the construction progress:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Working step } & \multicolumn{1}{c|}{ Execution and result } \\
\hline \begin{tabular}{l} 
Functional check and co-ordination of \\
the tools for the relevant working steps
\end{tabular} & \begin{tabular}{l} 
- Professional work can be only reached with suitable \\
tools
\end{tabular} \\
\begin{tabular}{l} 
Checking of trench measures: \\
Trench width and trench depth \\
according to pipe dimensions
\end{tabular} & \begin{tabular}{l} 
- Creating of optimal working conditions for pipe \\
layer and coupler assemblers; working clearance at \\
the areas of elbows, expansion pads and coupler \\
connections
\end{tabular} \\
Check of trench execution & \begin{tabular}{l} 
- Creating of a stone-free and plain laying bottom, \\
with lateral trench security and water and mud-free \\
assembling areas, during the total construction \\
period
\end{tabular} \\
Trench filling - Sand filling & \begin{tabular}{l} 
- Stone free covering with sand, at least 10 cm \\
thick around of the preinsulated PEHD-jacket-pipe, \\
squared timber have to be removed before filling, \\
Sand grain \(0-4\) mm (class NS 0/2), consider particle- \\
size curve exactly
\end{tabular} \\
\hline Trench filling - Filling material & \begin{tabular}{l}
-Stone free not binding compressing suitable material \\
will be filled in layers
\end{tabular} \\
\hline
\end{tabular}

\subsection*{10.1 Delivery}
10.1.1 Transport / Unloading / Storage ..... 10/1-3
10.1.2 Special Features Flexible Compound Systems. ..... 10/4-6
10.2 Pipe Construction - Buried Laying
10.2.1 Assembling Supports / Top-Holes / Foreign Lines ..... \(10 / 7\)
10.2.2 Connection Technology / Weld-Seam-Test. ..... 10 / 8
10.2.3 Fitting Pieces. ..... \(10 / 9\)
10.2.4 Z-Leaps / U-Elbow / Parallel-Branch. ..... 10/10-12
10.2.5 Shut-Off Valve ..... 10/13
10.2.6 Drain / Vent. ..... 10 / 14
10.2.7 Anchor - Concrete Block. ..... 10/15
10.2.8 Connection Couplers. ..... 10/16
10.2.9 One-Time-Compensator ..... 10/17-19
10.2.10 Tapping Branch ..... 10 / 20
10.2.11 One-Time-Valve ..... \(10 / 21\)
10.2.12 End Cap. ..... \(10 / 22\)
10.2.13 Wall Duct - Sealing Standard ..... \(10 / 23\)
10.2.14 Wall Duct - Sealing Insert. ..... 10 / 24
10.2.15 Leak Detecting. ..... \(10 / 25\)
10.2.16 Thermal Prestressing. ..... 10 / 26-32
10.2.17 Assembling Connection Coupler isopex. ..... 10 / 33-34
10.3 Pipe Construction - Overground Work
10.3.1 General / Method of Pipe-Laying / Transition Free to- Buried Laying. ..... 10 / 35
10.3.2 Bearing Distance ..... 10 / 36-37
10.3.3 Pipe Clamps. ..... \(10 / 38\)
10.3.4 Support Construction ..... \(10 / 39\)
10.4 Check List for Pipe Construction
10.4.1 Building Site - Quality Assurance ..... \(10 / 40\)

\title{
10 HANDLING PIPE CONSTRUCTION
}
10.1 Delivery

\subsection*{10.1.1 Transport / Unloading / Storage}

\section*{Transport}
isoplus-pipes and components as well as accessories will be delivered by truck to building site respectively to the material storage. The traffic route has to be suitable for heavy-load-traffic as well as for trucks with 12 m respectively 16 m loading area.

Before delivery the pipe ends will be closed with yellow caps for protection reasons. These protection caps should remain on the pipe ends until the assembling. Also in case of unloading of the isopluspipes, the caps may not be removed. Additionally it should be considered that the pipes will be loaded longitudinal and even.

The loading area of the trucks has to be checked concerning any rigid- and bearing out parts. If necessary such parts have to be removed in order to avoid damages of the pipes and especially of the PEHD-jacket pipe.

All couplers and shrinkable material as well as all accessories like end caps, sealing rings etc. will be delivered in protecting envelopes or/and cardboards. Also these cardboards may not be removed or damaged before beginning of the assembling works.

\section*{Unloading}

Unloading of trucks will be carried out by the pipe layer or by third parties. During this the safety regulations of all relevant regulations for preventing of accidents have to be considered. All isopluspipes, components and accessories have to be unloaded correctly and material-friendly, and may not thrown from the loading area.

At arrival of the material it has to be checked concerning any external damages. The completeness of the delivery has to be checked and recorded. Any damages have to be marked resp. registered clearly on the delivery papers.

Smaller dimensions and accessories should be preferable unload manually. In case of bigger dimensions the unloading will be carried out by use of a crane which should be provided. For that two textile- or nylon belts \(10-15 \mathrm{~cm}\) wide, with a load-beam of at least 4 m length or a truck with reacher should be used, for 12 m and 16 m pipe bars generally.

Because of this a not admissible bending and damage of the pipes, as well as a possible break of integrated systems, like leak detecting wires will be avoided.

Pulling and rolling on the ground as well as the use of steel ropes or chains is not permitted. Rough and uneven ground will cause scrapes and pressure marks at the jacket-pipe.


\section*{Storage}
isoplus-pipe bars and components have to be stored on stone-free and dry areas, separated by dimensions. Water stemming soils and groundwater endangered soils should be avoided. Sand sacks or timber-squares will be used as support for the pipe bars. Depending from dimension these should be between 10 and 15 cm wide and should be placed in a distance of approx. 2,00 m each. Crown pressure at jacket should not exceed \(40 \mathrm{~N} / \mathrm{cm}^{2}\) respectively \(4 \mathrm{~kg} / \mathrm{cm}^{2}\).


For safety reasons the height of pile should be limited to maximum \(2,50 \mathrm{~m}\). Conical or squared pipe-piles may be used. The pipes have to be generally protected against lateral slipping, by use of supports, pegs or wooden wedges.

\section*{Conical form}


Cuboid form


In case that the storage should last for a longer period, corresponding protection measures against all kind of weather conditions have to be provided. During a frost period the isoplus-pipes, -components and -accessories have to be protected against inexpert handling like stroke- and shock effect, bending etc.

\title{
10 HANDLING PIPE CONSTRUCTION
}

\subsection*{10.1 Delivery}

Accessories and incidentals like couplers, shrinkable sleeves, end caps, expansion pads etc. have to be as well stored sorted, dry, frost-protected and protected from direct sun-rays. The PUR-local foam components have, the already mentioned accessories should be stored in a closed room or container with anti-theft device, at a temperature between \(+15^{\circ} \mathrm{C}\) and \(+25^{\circ} \mathrm{C}\).


The PUR-local foam will be delivered separated in component A, Polyol - bright, and component B, Isocyanat - dark, in 11,51 or 101 cans. These cans may be opened just before using it. At temperatures below \(0^{\circ} \mathrm{C}\) the PUR-foam will crystallize. Frozen respectively crystallized foam may not be used for post insulation.

For the correct storage of all isoplus-system components the pipe-layer, respectively a third party will be exclusively responsible. He has to confirm the completeness of material and to supervise the material distribution during the construction period. The assembling material which will be required for post insulation has to be given to the AGFW-/BFW-approved isoplus-factory-engineers at the execution term.

10 HANDLING PIPE CONSTRUCTION
10.1 Delivery

\subsection*{10.1.2 Special Features Flexible Compound Systems}

\section*{Transport}
isoplus-flexible pipes will be delivered in coils (Diameter \(\geq 2,00\) \(\mathrm{m})\) per truck to the building site respectively to the material stock. In order to protect the carrier pipe the pipe ends are closed with yellow caps, which should be removed not before the connection of the pipes.

In case of a further transportation of the pipes the loading area of the truck should be checked concerning rigid stick out parts. The pipes should lay plain and symmetrically on the loading area.


\section*{Unloading}

Unloading will be made properly and carefully by the pipe-layer or third parties. In case of unloading by use of a crane, belt with a width of at least 10 cm should be used. Fork-ends of fork-lifts have to be covered with protecting pipes.

Pulling and rolling of flexible pipes on the ground as well as the use of steel ropes or chains is not allowed because of scratches and pressure-spots at the jacket-pipe, caused by uneven grounds.


\section*{Storage}

Flexible pipes have to be stored on even and dry surfaces, free of stones. Ground water endangered and water stowed soils should be avoid. Sand banks respectively -sacks or squared timber in star-constellation may be used as support.

In case that the pipes will be stored for a longer time, suitable protection measures against all weather conditions have to be provided. During a period of frost the jacket-pipe as well as the isoplus carrier pipe and the isopex carrier pipe has to be protected against strikes and shocks.


\title{
10 HANDLING PIPE CONSTRUCTION
}
10.1 Delivery

Accessories for flexible pipes have to be stored within a lockable room or container. The pipe-layer respectively a third party will be exclusively responsible for the correct storage of all system components. He will confirm the receipt of the complete material and will control the distribution of the material during the construction period.

\section*{Cut Off}

Flexible pipe-coils have to be opened from inside, due to the remaining tension.

ATTENTION: Danger of injuring !
For assembling the isoplus-flexible pipes will be uncoiled and cutted to the corresponding lengths. The coils should be also turned accordingly. Additionally it should be considered, that the coil will be not pulled on an uneven respectively stone containing ground.

After the right-angled cutting of the flexible pipe, the jacket-pipe and the PUR-foam should be cutted in a distance of max. 150 mm from the cut. Then the jacket will be peeled by use of a suitable tool and the foam, as well as the remaining foam will be removed.

ATTENTION: The red E/VAL-diffusion barrier of the isopexpipe, 6 bar - heating, may be not destroyed!

\section*{Processing}

Pipe laying and processing of isoplus-flexible pipes will be generally possible up to an outside temperature of \(+10{ }^{\circ} \mathrm{C}\). At temperatures below \(10{ }^{\circ} \mathrm{C}\) eventually suitable precautions should be provided, depending from dimensions. Up to PELD jacket-pipe dimension of 90 mm the assembling of flexible pipes will be also possible at \(\geq 0^{\circ} \mathrm{C}\).

In case of lower temperatures PUR-foam and jacket pipes can break. The risk will generally exist in case of jacket pipes > 90 mm and in case of isopex-double pipes at temperatures below \(10^{\circ} \mathrm{C}\).

In case that isoplus-flexible pipes should nevertheless laid at such low outside temperatures the suitable processing temperature has to be reached by storing the pipes inside of a heated room or by filling them with warm water and/or by heat supply (max. \(40^{\circ} \mathrm{C}\) on to the PELD-jacket) by use of a suitable equipment. Water filled pipes may not be stored during a longer period of frost.

In case that the pre-heating will be carried out by use of a gasburner, a burner-head of minimum \(\varnothing 50 \mathrm{~mm}\) has to be used. Preheating should be made with yellow flame in pendulum movements over a longer distance. Selective heating of the jacket-pipe will lead to damages of the flexible compound system.


\section*{Pipo-Laying}

Assembling of flexible pipes will be normally on a 10 cm sand bed. Eventually required manholes should be provided as working area. Due to the long delivery lengths this requirement will occur only exceptionally. Supports have to be provided in a distance of \(2,00 \mathrm{~m}\).

Flexible pipes may be laid side by side or on top of each other into the trenches. Pipe-laying by use of a special horizontal flush-drilling procedure will be also possible. The instruction of the executing company has to be strictly considered.


\subsection*{10.2.1 Assembling Supports / Top-Holes / Foreign Lines} Assembling Supports / Top-Holes

The assembling of the pipeline will be made on timber squares, hard-foam bars, sand sacks or directly on a 10 cm sand layer. In case of direct laying on a sand bed top-holes will be required as working space at the connection points. Supports will be placed in a distance of 2 m that means in case of 6 m pipe bars three and in case of 12 m pipe bars six supports will be necessary. In order to reach a correct coupler assembling, the first support should be placed at least 1 m from the pipe end respectively from the weld seam.


If squared timber will be used, these have to be removed before the sand filling of the trench. This will avoid not admissible pressure loads on the PEHD-jacket-pipe. Sand sacks have to be slit before refilling.

\section*{Foreign Lines}

Essential hindrance concerning the line guidance have to be considered in case of district heating lines which will be constructed for the public traffic, due to existing lines and facilities like i. e. for gas, water, sewage, electricity or post. Therefore the location of these obstacles has to be clarified with the corresponding authorities by means of estate layouts and sectional drawings, before the beginning of the construction works. The result has to be determined in written. The following distances have to be meet in accordance with the AGFW, providing that no other local regulations should be valid:
\begin{tabular}{|l|c|c|}
\hline \multirow{2}{*}{ Foreign Line - Type } & \multicolumn{2}{c|}{ Minimum Distance } \\
\cline { 2 - 3 } & \begin{tabular}{c} 
at crossing or \\
parallel laying up to 5 m
\end{tabular} & \begin{tabular}{c} 
in case of parallel laying \\
above 5 m
\end{tabular} \\
\hline Gas- and water pipelines & \(20-30 \mathrm{~cm}\) & 40 cm \\
1 kV - signal- or measure cable & 30 cm & 30 cm \\
\hline 10 kV cable or a 30 kV cable & 60 cm & 70 cm \\
several 30 kV cable or cable of more than 60 kV & 100 cm & 150 cm \\
\hline
\end{tabular}

\subsection*{10.2.2 Connection Technology / Weld-Seam-Test}

\section*{Connection Technology}

Before welding the pipes and components, the appropriate casing joints with the associated shrink joints must be inserted onto the casing pipe next to the weld. If adverse weather conditions are present, a protective tent must be erected over the joint area for preparation and implementation. While welding, the front sides of the pipe ends must be protected from welding sparks and burns using damp cloths, flame-retardant mats, or front covers.
The joints of the black steel pipes can be implemented in accordance with DIN ISO 857-1 using the following procedures: manual bend welding, gas welding with an oxygen-acetylene flame, tungsten inert gas welding (TIG), or a combination of processes. AGFW worksheet FW 446 applies to the quality of the weld, its inspection and its evaluation.

Companies carrying out welding work must meet the welding technical requirements in accordance with EN ISO 3834 and must be certified in accordance with AGFW Worksheet FW 601. Welding work may only be carried out by welders who are in possession of a valid test certificate in accordance with DIN EN 287-1. In addition, the corresponding qualification in accordance with DVGW GW 350 must be documented under construction site conditions.

The welding procedure to be used must be appropriate for construction site welding. DIN 2559-2 and 3 as well as DIN EN ISO 9692-1 based on DIN EN 448 are decisive for weld preparation, the joint form on the steel, and the distance between the pipe ends.

The additional weld materials must be matched to and approved with the basic materials; they must be selected by weld procedure in accordance with DIN EN 12536, DIN EN ISO 2560 or DIN EN ISO 636 and must be clearly marked. The completed welds must meet the requirements of evaluation groups B and C in accordance with DIN EN ISO 5817 in accordance with AGFW Worksheet FW 601; only evaluation group B is required in accordance with DIN EN 489.

\section*{Weld-Seam-Test}

After the welding works are finished the welding seams have to be tested according to the agreed extent between purchaser and supplier. Obvious damages are classified in DIN EN ISO 17637. After this, the non-destructive weld test must be carried out in an environment to be determined. If a radiographic test is used, test class B of DIN EN 1435 is desirable.

A penetration test must be carried out in accordance with DIN EN 571-1, the ultrasound test in accordance with EN 1714, a magnet particle test in accordance with DIN EN ISO 17638, and an eddy current test in accordance with DIN 54141. After the non-destructive test, the leakage and/or sealtightness test must be carried out in accordance with AGFW Information Sheet FW 602.
The visual inspection method using air is recommended compared with that using water in a control test; during the test the welds are coated with a foaming agent. If no froth bubbles form within at least 1 minute, its state of sealtightness is considered proven. For the method using internal air overpressure the test pressure is 0,2 to 0,5 bar, with external air underpressure (vacuum glasses) an absolute maximum of 0,6 bar.
A cold water pressure test must be carried out on the vented route in accordance with the DVGW Worksheet G 469, Procedure A1. The test pressure is \(1,3 x\) the operating pressure at its highest point and must be maintained for 3 hours.

\subsection*{10.2.3 Fitting Pieces}

Due to individual pipeline guidance it will be necessary to shorten standard pipe bars into smaller fitting pieces. Due to this any pipe line length can be realised. The following working steps will be necessary for the production of a fitting piece:

The length of the fitting piece will be measured at a pipe bar and marked. At the left and the right from this mark the \(2 \cdot 200 \mathrm{~mm}\) wide respectively long area of dismantling will be marked.


Cut the PEHD-jacket at the marks and connect both round cuts with a diagonal cut.

ATTENTION: At temperatures of \(<10^{\circ} \mathrm{C}\) the jacket pipe has to be heated before cutting, due to danger of cracks.

ATTENTION: The alarm wires of the monitoring system may not be cut when the round cuts will be made. Thereafter the jacketpipe has to be lifted off by use of a suitable tool, i. e. mortise chisel.


The PUR-foam has to be removed by use of a hammer and a mortise chisel. Thereafter the alarm wires will be cut central. Remaining foam on the steel pipe has to be removed by use of an emery linen. Finally the steel- respectively the carrier pipe has to be cut at the middle of the dismantling area.


\subsection*{10.2.4 Z-Leaps / U-Elbow / Parallel-Branch}

\section*{Z-Leaps with Fitting Piece}

The length of Z-elbow [P1] will be in correspondence with the static requirements. The cross-angle \([\mathrm{A}]\) can be seen from the isoplus-trench-design. Theses leaps will be assembled with two insulated elbows, normally \(90^{\circ}\), and a fitting piece. The fitting piece \([\mathrm{P} 1]\) should be at least \(1,50 \mathrm{~m}\) long in order to put the connection couplers on.


\section*{Z-Leaps without Fitting Piece up to DN 100}

A transverse leg \([A]\) of \(2,00 \mathrm{~m}\) is usually sufficient from a static point of view in the smaller nominal size range up to DN 100. No fitting piece will be necessary in case that 4 long-elbows 1,0 \(1,0 \mathrm{~m}\) will be used. Slipping over on the 1 m long angle of the elbows will be possible.

\section*{Z-Leaps without Fitting Piece from DN 125}

A transverse leg \([A]\) of \(2,50 \mathrm{~m}\) is usually sufficient from a static point of view in the medium nominal size range up to DN 125. To achieve this, 2 bend pieces with bars 1,0 \(1,0 \mathrm{~m}\) long and 2 bend pieces with bars \(1,0 \cdot 1,5 \mathrm{~m}\) long must be used. During this process, inserting the joint is also possible on the long bars of the bend.


As of approx. DN 400, detailed static calculations are required.

\title{
10 HANDLING PIPE CONSTRUCTION
}

\section*{U-Elbow with Fitting Piece}

The length of the U-elbow [P1] will be in correspondence with the static requirements. The total bearing out \([\mathrm{A}]\) can be seen from the isoplus-trench-design. The fitting pieces [P2] + [P3] at U-elbow head are different in length, whereas the inner one [P2] should be at least 1,50 m long. This will allow to put on both couplers.

\section*{U-Elbow without Fitting Piece up to DN 100}

In the smaller nominal size range up to DN 100, from a static point of view, a projection [A] of \(2,00 \mathrm{~m}\) is usually sufficient. When using 6 bend pieces with leg lengths of 1,0 - 1,0 m and 2 bend pieces with legs \(1,0 \cdot 1,5 \mathrm{~m}\) long, fitting pieces are not usually required. During this process, inserting the joint is also possible on the long legs of the bend.

\section*{U-Elbow with Fitting Piece from DN 125}

A projection [A] of 2,50 m is usually sufficient from a static point of view in the medium nominal size range up to DN 125. When using 3 bend pieces with legs \(1,0 \cdot 1,0 \mathrm{~m}\) long and 5 bend pieces with legs \(1,0 \cdot 1,5 \mathrm{~m}\) long, only one fitting piece [P1] on the external U-bend head, whose length is determined by the dimension and the pipe distance, is required. During this process, inserting the joint is also possible on the long legs of the bend. Detailed static calculations are required above DN 400.


10 HANDLING PIPE CONSTRUCTION
10.2 Pipe Construction - Buried Laying

\section*{Parallel-Branch with Fitting Piece}

In a parallel branch, the length of the fitting piece [P1] is dependent on the static requirements. The transverse leg \([A]\) is given in the isoplus route plan. These offsets are assembled from a finished bend, in general \(90^{\circ}\), and a fitting piece. The fitting piece [P1] must be at least \(1,50 \mathrm{~m}\) long in order to insert the casing joints onto it.


\section*{Parallel-Branch without Fitting Piece up to DN 100}

A transverse leg \([A]\) of \(1,50 \mathrm{~m}\) is usually sufficient from a static point of view in the smaller nominal size range up to DN 100. When using bends with legs \(1,0 \cdot 1,0 \mathrm{~m}\) long, no fitting piece is required. During this process, inserting the joint is also possible on the long legs of the bend.


\section*{Parallel-Branch without Fitting Piece from DN 125}

A transverse leg \([A] 2,00 \mathrm{~m}\) long is usually sufficient from a static point of view in the nominal size range from DN 125 to approx. DN 250. When using bends with legs \(1,0 \cdot 1,5 \mathrm{~m}\) long, no fitting piece is required. During this process, inserting the joint is also possible on the long legs of the bend. possible on the long legs of the bend. Detailed static calculations are required above DN 400.

\title{
10 HANDLING PIPE CONSTRUCTION \\ 10.2 Pipe Construction - Buried Laying
}

\subsection*{10.2.5 Shut-Off Valve}

\section*{Shut-Off Valve}

Shut-off valves will be welded into the line like a straight piece of pipe. The welding works have to be carried out in passage-position that means with open ball, in order to avoid a damage of the sealing. Installation within the area of angles of L-, Z- or U-elbows will be not admissible because of occurring bending tensions.

The PEHD-protection pipe, with inside centering support, which is not part of the delivery, will be shortened according to the covering height. It will be put over the operational dome and will end in a street-cap or pit-ring. Operating will be made by use of a T-key or by a portable plug-on-gear, which should be generally used starting from dimension DN 150.

Please consider during installation that there will be enough space for movement, due to possible axial expansion. The prolongation will be put vertical on the conical square of the valve-dome. The prolongation will end also with a conical square, on which now the T-key or/and the plug-on-gear can be put.

After the assembling will be finished, the first closing procedure should be carried out after flushing the pipeline, in order to remove rigid particles in the pipes, which may cause damages of the sealings. The shut-off valves are right hand closing or clockwise up to a \(90^{\circ}\) - stop, the opening will be contrary. The stops should not be over winded by force. Opening and closing should be carried out slowly, in order to avoid pressure shocks in the pipe system.

In between or adjusted positions are not allowed, due to possible damages of the sealings. The use of not suitable torque moment-duplicators, or inexpert prolongation of the T-key are not allowed and will lead to an exclusion of warranty.


\subsection*{10.2.6 Drain / Vent}

\section*{Drain / Vent}

At top and low points, which will especially occur at constant covering heights of pipelines, draining or/and venting (ELE/ELÜ) have to be provided, according to the regulations of the local management of works. ELE/ ELÜ branches with a vertical exit will be welded into the pipeline like a straight piece of pipe, see chapter 2.2.8. Installation at the area of L-, or Z- angle or U-elbows will be not allowed, due to occurring of bending tensions.

After adjusting of the exit height an end cap, see chapter 10.2.12, has to be assembled. Thereafter the assembling of a draining- respectively venting valve will be carried out at site. At the outside-thread of the ball valve, the suction tube can be connected.

The still visible not insulated steel pipe has to be wrapped with a bitumen bandage. Please consider that the direction of the wrapping should be made from top to bottom. Finally a PEHD-blind-cover will be put over the complete ELE/ELÜ- construction, for protection against percolating water. This blind-cover has to be equipped with a suitable insulation material.

For protection against axial movements expansion pads have to be assembled at the exit, in accordance with the isoplus-trench-design. The mentioned end cap, the PEHD-blind-cover and the expansion pads are not part of the delivery range of the ELE- or/and ELÜ-branches.

Alternatively to the vertical-branches also pre-fabricated draining/venting, acc. to chapter 2.2.9, can be used. At the exit of these a corresponding ball valve is integrated respectively foamed in.


\title{
10 HANDLING PIPE CONSTRUCTION \\ 10.2 Pipe Construction - Buried Laying
}

\subsection*{10.2.7 Anchor - Concrete Block}

Concrete blocks have to be installed into grown soils. The required excavation has to be made before pipe laying. In case that an anchor will be located before a construction building or a house, a clearance of at least \(2,00 \mathrm{~m}\) should strictly considered between the brickwork and the anchor. A suitable drainage has to be provided in case that stemming groundwater cannot be excluded at the concrete-block.

The execution of the water tight block has to be made by use of blast furnace cement with concrete quality C 20/25 F2 acc. to DIN 1045-2 and DIN EN 206-1 incl. the required armouring of B500B acc. to DIN 488-1. The irons have to be bended acc. to the standard and can be welded at the overlapping. Before the pipeline will be put into operation the pipe trench and the concrete block has to be filled completely. The binding of the concrete should be totally completed. First after 28 days the given-consistency will be reached. The specific block-size as well as the corresponding reinforcing steel can be seen from isoplus-pipeline design, see chapter 2.2.12.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ Dimension Steel Pipe } & \multicolumn{2}{c|}{ Reinforcing Steel } \\
\hline \begin{tabular}{c} 
Norminal \\
Diameter \\
in \\
DN
\end{tabular} & \begin{tabular}{c} 
Outside- \\
\(\varnothing\) \\
\(d_{a}\) \\
in mm
\end{tabular} & \begin{tabular}{c} 
Number \\
resp. \\
piece
\end{tabular} & \begin{tabular}{c} 
Diameter \\
\(\varnothing\) \\
in mm
\end{tabular} \\
\hline 20 & 26,9 & 2 & 8 \\
\hline 25 & 33,7 & 2 & 8 \\
\hline 32 & 42,4 & 2 & 8 \\
\hline 40 & 48,3 & 2 & 8 \\
\hline 50 & 60,3 & 2 & 8 \\
\hline 65 & 76,1 & 2 & 8 \\
\hline 80 & 88,9 & 2 & 8 \\
100 & 114,3 & 4 & 8 \\
\hline 125 & 139,7 & 4 & 8 \\
\hline 150 & 168,3 & 4 & 8 \\
\hline 200 & 219,1 & 6 & 10 \\
\hline 250 & 273,0 & 6 & 10 \\
\hline 300 & 323,9 & 6 & 10 \\
\hline
\end{tabular}




10 HANDLING PIPE CONSTRUCTION
10.2 Pipe Construction - Buried Laying

\subsection*{10.2.8 Connection Couplers}

Several coupler constructions are available for the different technical requirements. All PEHDconnection couplers are used for non-positive gas- and water tight jacket-pipe connections. The assembling information for all kind of couplers have been integrated into the chapter 6 for simple use and handling of the available isoplus-Design Manual.

Before welding of the carrier pipes all kind of couplers as well as the shrinkable sleeves should be slipped over pipe bars. Only the pipe-layer or a qualified third party will be responsible for that.

Thereafter and after recording of the agreed test procedures, the welding seams will be insulated and sealed with couplers and PUR-foam. Because of warranty reasons these works, except in case of isocompact \({ }^{\circledR}\)-couplers, should be carried out by AGFW-/BFW-approved assembling specialists educated by isoplus-factory assembling personnel.

An identification mark will be fixed on all coupler connections carried out by isoplus.
This will allow an exact identification of the corresponding assembling engineer and will increase the quality requirement. In case that the post-insulation should be made by third parties, their qualification has to be proved by presenting of the AGFW-/BFW-test certificate, before beginning of the post insulation works.
isoplus has to be informed concerning this exceptional case before beginning of the works. The general valid isoplus-assembling guidelines, see chapter 11.5 .2 have to be generally considered.


\subsection*{10.2.9 One-Time-Compensator}

\section*{Preparation Works}

The length- and measure values mentioned in this chapter, like \(\left[L_{\downarrow}\right],\left[u_{m}\right]\) etc. can be seen in data sheet chapter 7.1.1, and the isoplus-trench-design. The one-time-compensator (EKO) will be delivered with fully extended bellow, which means with the maximum possible expansion absorption \(\left[u_{m}\right]\). The measure \(\left[u_{m}\right]\) corresponds exactly with the distance between the edge of the outer guiding pipe and the rotating notch at the inner guiding pipe.


ATTENTION: The factory made welding spots are only used for transportation security and should therefore be removed before any further works.

Delivery length \(\left[\mathrm{L}_{\mathrm{L}}\right]\) has to be cut about the mechanical prestressing measure \(\left[\mathrm{V}_{\mathrm{m}}\right]\). Because of this the real from the pipeline expected expansion \(\left[u_{\mathrm{t}}\right]\) will be adjusted. This will be decisive for the correct thermal prestressing of the EKO-system. For that the EKO has to be pressed together mechanically about the measure \(\left[\mathrm{V}_{\mathrm{m}}\right]\) by use of a suitable gripping tool. The required force \([\mathrm{F}]\) can be seen from data sheet, chapter 7.1.1. On request EKO's can be pre-stressed. This will be generally the case starting from dimension DN 350, due to high forces.

The distance between the edge of the outer pipe and the notch of the inner pipe is now in accordance with the real expansion absorption [ \(u_{t}\) ], and the lengths of the EKO's with the real installation length \(\left[E_{L}\right]\).At this status the both guiding pipes of the EKO's will be connected with \(2-3\) welding points. This will fix the expansion length \(\left[u_{t}\right]\) adjusted for the installation. For the later pressure test of the pipeline no modification of the EKO length will be allowed. The measure \(\left[u_{t}\right]\) has to be adjusted identical for primary and secondary-EKO, because the circulating pre-heating- respectively starting medium in the primary and secondary line has to indicate the same thermal values.

10 HANDLING PIPE CONSTRUCTION
10.2 Pipe Construction - Buried Laying

\section*{Installation}

Before EKO's will be welded in, the long-connection- respectively long-double-reduction couplers have to slipped over the pipe bars. Due to reasons of Quality Safety of the total system, in consideration to sufficient insulation thickness and monitoring of the net-work, so called long-double-reduction couplers will be necessary for EKO's up to the dimension of DN 200.

The EKO will be welded in exactly at the spots mentioned in the pipeline design, with the fixed status, like a piece of pipe. During this it has to be considered that no rough impurities will come into the inside located chrome-nickel-steel-bellow. Furthermore the control-screw for the tightness-test of the EKO should be at the upper area, between 11:00 and 13:00 o'clock. The same requirements as for all other steel-welding connections in the system, will be also relevant concerning the welding quality of both round-seams at the welding ends of the EKO's.

The given distance measures between an expansion angle and an EKO, respectively between two EKO's has to be guaranteed. EKO's have to be installed generally between two, at least 6 m long straight pipe bars. The installation between bowed pipes or in elastic bowed sections, which means a bending load for the EKO's, will be not admissible.

Furthermore it will be not allowed to cut the EKO, to use it for changing the direction respectively as compensation support in case of axis-bevelling and length-differences. Bevelling cuts are not allowed at the both welding seams. After welding in of the EKO's the connecting points at the fillet seam may be not removed.

\section*{Weld-Seam-Test of Pipeline with installed EKO}

After the welding works will be finished the welding seams have to be tested. During pressure test it should be considered, that the hydraulic restoring forces will be reliable compensated. Otherwise the adjusted expansion length [ \(u_{t}\) ] at the EKO's may change in an unacceptable way, which could lead to a damage of the EKO's.

Fixing of a restoring force-security directly at the EKO will be not allowed. In case that the EKO should be factory pre-stressed, the fixing will be just a security during transportation and during assembling. The fixing will be not suitable for transmission of restoring forces. Restoring forces \([\mathrm{F}]\) will be calculated as follows:
\[
F=A \cdot p_{p}[N]
\]
\(A=\) effective bellow cross section in \(\mathrm{cm}^{2}\), see chapter 7.1.1
\(p_{p}=\) test pressure in bar

\section*{Insulation-, Sealing- and Earth Works}

After the test procedures are finished and recorded, the welding seams have to be insulated by the AGFW-/BFW-approved and isoplus-educated assembling engineers, by use of the connection couplers which have been slipped on to the pipes before, however without the long-connection couplers at the welded EKO's. Thereafter the expansion pads will be installed at all expansion angle and other corresponding longitudinal and thickness data as per isoplus-trench-design.

Thereafter the 10 cm sand-bed with a \(0-4 \mathrm{~mm}\) grain (class NS \(0 / 2\) acc. to DIN 12620) has to be prepared and compressed manually at the complete pipeline, except of the EKO-areas. Now also the pipe trench, except of the EKO's has to be re-filled and compressed manually with excavation material acc. to DIN 18196, see chapter 9.5 and 9.6.

The assembling pit at the EKO's has to be big enough in order to carry out the final welding and insulation works without any problems. However it has to be considered that the length of the pit will not exceed the effective required space. This will guarantee that the pipes will not buckle horizontal or/and vertical during start of operation.

\section*{Start of Operation resp. Prestressing of the Pipeline}

Before starting the operation of the pipeline, the stitch-spots at the fillet weld of the EKO's have to be detached, in order to allow the compensation of expansion in the compensator-bellow. The heating of the pipes has to be carried out slowly and parallel, in order to avoid any temperature shocks.

If the pre-stress temperature of \(80^{\circ} \mathrm{C}\) has been reached, the adjusted and calculated expansion compensation \(\left[u_{\mathrm{t}}\right]\) has to be checked. In case that the outside guidance pipe will appear at the circulating notch of the inner guidance pipe, the final position of the EKO has not yet reached and the heating temperature has to be increased.

ATTENTION: The final position of the EKO's has to be reached!

\section*{Final Works resp. Final Assembling}

If the final position of the EKO's has been reached, the medium temperature has to be kept as long until the both guidance pipes will be welded with a fillet seam. Due to this a non-positive- and material connection has been carried out and the EKO will be considered just as a rigid piece of steel. The pipeline is now prestressed.

The fillet seam of the EKO has to be tested by an air-pressure test. Therefore a valve has to be screwed into the test drill at the upper third of the EKO. As test pressure 0,2 to 0,5 bar air will be sufficient. After testing the valve will be removed and the test drill will be tightly closed and welded by use of the also delivered screw.

Now the EKO will be insulated by the assembling engineers by using long connection couplers which have been slipped on to the pipes before. Finally only the sand-bed in the EKO-pit has to be prepared and compressed.

10 HANDLING PIPE CONSTRUCTION 10.2 Pipe Construction - Buried Laying

\subsection*{10.2.10 Tapping Branch}

Preparation and execution of the tapping has to be made acc. to the guidelines of AGFW. That means a difference of nominal dimension of at least two dimensions, or i. e.: DN 150 has to be tapped with max. DN 100.

The tapping of a coupler connection is not allowed. Tapping locks have to be stored at temperature of \(-5^{\circ} \mathrm{C}\) to \(+30^{\circ} \mathrm{C}\) and a relative humidity of \(<70 \%\). Thread and sealing areas may not be damaged.

According to the passage pipe dimension the end of the lock without thread has to be adjusted without to shorten it. The tapping-lock will be welded electrically to the main pipe, by use of a \(45^{\circ}\)-exit with \(45^{\circ}\)-angle and in case of a parallel branch with \(90^{\circ}\)-angle. The lock-disc will be fixed at the handle and lubricated. The correct assembling of the lock can be checked by easy putting in and out of the disc.

It will be possible to check the weld seam before the tapping. The appropriate compass saw will be assembled at the tapping tool and the unit will be fixed at the tapping-lock. The drill spindle will be lowered until the grip-drill with gripping device will touch the passage pipe. Now the gear-unit will be fixed at the tapping unit and the tapping will be carried out under pressure with adjustable speed, depending from dimension.

After drilling the compass saw with spindle will be pushed slowly to the "off" position. Thereafter the lock-disc will be pushed into the slot of the tapping-lock. Now the gear and the tapping unit will be dismantled and the branch pipe will be welded to the tapping-lock. A pressure test against the tapping-lock will demonstrate the tightness of the connection.

The lock-disc can be removed now slowly from the tappinglock, in order to avoid any pressure shock, and the slot of the tapping-lock can be welded electrically. Finally the exit will be post insulated by isoplus-factory educated assembling engineers, by use of a PEHD-assembling branch, see chapter 6.11.1. Detailed assembling information will be available on request.

max. 400 mm insulates off


\title{
10 HANDLING PIPE CONSTRUCTION
}

\subsection*{10.2.11 One-Time-Valve}

Single-use and on-demand connection ball valves can be used to close off a construction section which will be continued at a later date. The available isoplus route can be continued at any time without requiring the pipeline to be emptied and taken out of operation if welded in as an end piece.

Single-use ball valves will be welded into the route in a closed position like a piece of pipe. In connection with double pipes, make sure that the assembly of the ball valve occurs clockwise and relocated along the longitudinal axis.

To prevent contamination and to prevent the polyethylene foam from penetrating into the open end of the ball valve, assembly of a dished bottom and a pipe cap in accordance with DIN EN 10253-2 is required. For use up to temperatures at least in accordance with EN 253 operating temperature and 25 bar operating pressure.

Post-insulation is made using an end joint. It is necessary that this end joint is being delivered with a widened or enlarged diameter in order to ensure the necessary insulation thickness, like chapter 7.1.3.

Once the continuing section has been installed, assembled, and welded to the single-use ball valve, commissioning may take place. For this purpose, the closing screw of the single-use ball valve will be operated using a screwdriver or a hexagon Allen key and then welded.


10 HANDLING PIPE CONSTRUCTION 10.2 Pipe Construction - Buried Laying

\subsection*{10.2.12 End Cap}

The pipe layer will be responsible for putting the end caps on to the pipes in the buildings or in manholes, before connection to the conventional continuing pipelines. Fixing in the PJP-ends in a wall without end cap is not allowed. The alarm wires have to be kept free until to the final assembling, they may not be fixed in a wall and not pulled off. End caps may not cut open and have to be protected from heat and combustion during welding works. Cut up end caps are excluded from assembling.


Before shrinking of an end cap, the PEHD-jacket-pipe end has to be degreased by use of a PEcleaner. Thereafter the jacket-pipe and the steel pipe has to be roughen with an emery linen on a width of approx. 100 mm . Remove PE- and steel particles.

The shrinking of the end cap will be continued with a soft propane gas flame of at least \(60^{\circ} \mathrm{C}\) in circumference direction. Thereafter let it cool down. Now the shrinking procedure will be continued at the annular gap and at the steel pipe. The shrinking procedure will be finished as soon as the sealing adhesive will expose at the edges.

Due to warranty reasons the shrinking of the end caps should be carried out by the AGFW-/BFWapproved and isoplus-factory educated assembling engineers.

At medium temperatures > \(120^{\circ} \mathrm{C}\) the end caps have to be fixed additionally with stainless-strap retainers, as well at carrier- as also at jacket-pipe.

Minimum-Excess [A]:
\begin{tabular}{|c|c|c|c|c|c|}
\hline from & 65 & 250 & 450 & 710 & 1000 \\
\hline Diameter \(\mathrm{D}_{\mathrm{a}}\) in mm to & 225 & 400 & 670 & 900 & 1300 \\
\hline PEHD-Jacket-Pipe Excess A in mm & 100 & 125 & 150 & 200 & 250 \\
\hline
\end{tabular}

\title{
10 HANDLING PIPE CONSTRUCTION
}

\subsection*{10.2.13 Wall Duct - Sealing Standard}

The dimension of the wall duct respectively the core drill is depending from the PEHD-jacket-pipe, the number of pipes and from the kind of sealing.

\section*{Sealing Ring - Standard}

The neoprene ring has to be slipped on in the middle of the brickwork and should not lie on. The mentioned passing through size will allow a correct concrete-pouring. At dimensions \(\geq\) DN 400 it will be recommended to slip on two sealing rings per pipe and to wrap the space in between with a grease-band. The admissible angle of the pipe to the wall will be max. \(30^{\circ}\).

The mentioned minimum measures have to be kept strictly. The total size will be calculated as follows:
\(B=x \cdot D_{a}+M \bullet(x-1)+200[m m]\)
\(H=D_{a}+200[m m]\)
\(x=\) Number of pipelines
\(\mathrm{D}_{\mathrm{a}}=\) Jacket-Pipe Outside-Diameter in mm
M = clear distance between Jacket-Pipes, acc. to chapter 9.2.3

At the pipe duct through a concrete wall also a core drill \([\mathrm{K}]\) can be provided. At installation of the standard sealing ring the drill should be at least 150 mm bigger than the PEHD-jacket-pipe diameter.
\[
\varnothing \mathrm{K}=\mathrm{D}_{\mathrm{a}}+150[\mathrm{~mm}]
\]


Minimum-Excess [A]:
\begin{tabular}{|lc|c|c|c|c|c|}
\hline \begin{tabular}{l} 
PEHD-Jacket-Pipe- \\
Diameter \(D_{\mathrm{a}}\) in mm
\end{tabular} & from & 65 & 250 & 450 & 710 & 1000 \\
\hline to & 225 & 400 & 670 & 900 & 1300 \\
\hline PEHD-Jacket-Pipe Excess A in mm & 100 & 125 & 150 & 200 & 250 \\
\hline
\end{tabular}

\subsection*{10.2.14 Wall Duct - Sealing Insert}

The press-water tight insert will be installed into a pipe liner or a core drill \([K]\). The mentioned drill diameters should be strictly kept, because the width of the C 40 - insert will match the ring-space gap. The sealing will end with the outside of the wall and can be re-stretched from inside of the building respectively inside of the manhole. The admissible angle to the wall will be max. \(8^{\circ}\). For the jacket-pipe excess [A] analogous the table in chapter 10.2.13 will be valid. The mentioned core drillings are valid only for type C 40. isoplus will not guarantee for the correctness of the diameters in case of using any other type!

The pipeline has to be tightened carefully at the building entry in case that sealing inserts will be used, in order to avoid settlements. Additional the pipeline should be supported in the building or in the house. The special sealings can compensate only slight axial movements up to 20 mm .

ATTENTION: Radial loads or soil-settlements at the building or manhole entry will cause leaks. This should be avoided by efficient compressing of the soil and by support constructions in the manhole or in the building. A discharge of pressure can be reached by a stripe-foundation before the building edge.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Jacket-Pipe- \\
\begin{tabular}{c}
\(\mathrm{D}_{\mathbf{a}}\) \\
in mm
\end{tabular}
\end{tabular} & 65 & 75 & 90 & 110 & 125 & 140 & 160 & 180 & 200 & 225 & 250 & 280 & 315 & 355 \\
\hline \begin{tabular}{c} 
Diameter \\
Core Drill \\
K in mm
\end{tabular} & 125 & 125 & 150 & 200 & 200 & 200 & 250 & 250 & 300 & 300 & 350 & 350 & 400 & 450 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\hline \text { Jacket-Pipe- } \varnothing \\
D_{a} \\
\text { in } \mathrm{mm} \\
\hline
\end{gathered}
\] & 400 & 450 & 500 & 560 & 630 & 670 & 710 & 800 & 900 & 1000 & 1100 & 1200 & 1300 & \(\xrightarrow{0}\) \\
\hline Diameter Core Drill K in mm & 500 & 600 & 700 & 700 & 800 & 800 & 800 & 900 & 1000 & 1100 & 1200 & 1300 & 1400 & \[
\begin{aligned}
& \hline \text { O } \\
& \hline 0
\end{aligned}
\] \\
\hline
\end{tabular}

The pipe-liner made of special synthetic fibre cement (SFC) acc. to DIN 19800 consists of a pressure pipe PN 6, outside grooved, corrosion resistant and not electrically conducting. It has to be already fixed and positioned during the construction works. The inner diameter [ D ] is correspondent with the diameter of the core drill \([K]\). The length of the pipe-liner \([\mathrm{L}]\) is depending from the thickness of the wall. It will be available in standard length 200, \(240,250,300,365,400,500,650\) and 1000 mm .


\title{
10 HANDLING PIPE CONSTRUCTION \\ 10.2 Pipe Construction - Buried Laying
}

\subsection*{10.2.15 Leak Detecing}

\author{
IPS-Cu \({ }^{\circledR}\) \& IPS-NiCr \({ }^{\circledR}\)
}

The leak detecting wires foamed in into the pipe bars and components will be connected during the postinsulation works by approved assembling engineers. All wires are different in colour, in order to avoid wire connection failures.

During pipe assembling the wires have to be aligned to 11:00 o'clock respectively 13:00 o'clock. Do never change the wire codification. Due to warranty reasons the final wiring, that means the assembling of all IPS-Cu \({ }^{\circledR}\) and IPS-NiCr \({ }^{\circledR}\) accessories as well as units, will be carried out exclusively by the approved and isoplus-factory educated assembling engineers. After completion of these works a measure- respectively acceptance report has to be prepared.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ IPS-Cu \({ }^{\circledR}\)} & \multicolumn{1}{c|}{ IPS-NiCr \({ }^{\circledR}\)} \\
\hline \(\begin{array}{l}\text { Wire Connection: }\end{array}\) & \(\begin{array}{l}\text { Wire Connection: } \\
\text { Decoil bare Cu-wire ends, stretch carefully and cut to abut, degrease } \\
\text { and draw bright by use of sandpaper. Thereafter press right colours } \\
\text { with squeeze husks and solder additionally, which will avoid high } \\
\text { transition resistances. Fix two wire-distanceholders at pipe and fix } \\
\text { the wires on it. Check measurement on each coupler and in both } \\
\text { directions. }\end{array}\)
\end{tabular} \(\left.\begin{array}{l}\text { Decoil wire ends, stretch carefully, strip the insulation of yellow NiCr- } \\
\text { wire with } 10 \text { mm overlengths, cut black wire to abut, cut and strip the } \\
\text { insulation. Pull shrink-hose approx. } 70 \text { mm over both wires. Connect } \\
\text { black wires to abut, yellow wires overlapping with squeezing } \\
\text { husks, } 2 \times \text { xqueezed. Shrink shrinking-hose above the husks. Fix } \\
\text { two wire distance holder at the pipe and fix the wires on it. Check } \\
\text { measurement on each coupler to the left and to the right. }\end{array}\right\}\)


10 HANDLING PIPE CONSTRUCTION 10.2 Pipe Construction - Buried Laying

\subsection*{10.2.16 Thermal Prestressing}

\section*{Pipe Laying and Weld-Seam-Test}

The PJP-pipeline will be assembled according to the isoplus-laying guidelines on assembling supports or directly on the sand-bed. Before the welding of the pipes and components, the corresponding connection couplers with the shrinking sleeves have to be slipped on the jacket-pipe beside of the welding spot.

After completion of the welding works, the welding seams have to be checked in accordance to the agreed extend between buyer and supplier. Obvious damages are classified in DIN EN ISO 17637. Subsequently, the non-destructive weld test must be carried out in an environment to be determined. In case of a radiographic test, test class B of DIN EN 1435 is desirable. After the non-destructive test, the leakage and/or sealtightness test must be carried out in accordance with AGFW Information Sheet FW 602.

The visual inspection method using air is recommended compared with that using water in a control test; during the test the welds are coated with a foaming agent. If no froth bubbles form within at least 1 minute, its state of sealtightness is considered proven. For the method using internal air overpressure the test pressure is 0,2 to 0,5 bar, with external air underpressure (vacuum glasses) an absolute maximum of 0,6 bar.

A cold water pressure test must be carried out on the vented route in accordance with the DVGW Worksheet G 469, Procedure A1. The test pressure is \(1,3 x\) the operating pressure at its highest point and must be maintained for 3 hours.

\section*{Insulation- and Sealing Works}

After the test procedure will be completed and recorded, the welding spots will be insulated by the AGFW-/BFW-approved and isoplus-factory educated assembling engineers, by use of the connection couplers which have been slipped over the pipes before, but without the long-connection couplers at eventually necessary fitting pieces respectively measuring systems.

Thereafter the expansion pads will be assembled at the expansion angle like L-, Z- and U-elbows as well as at all other required spots in correspondence to the length- and thickness data of the isoplus-trench-design.


\section*{Preparation Works}

After the insulation works the prestressing section has to be checked concerning obstacles like roots etc. which will eventually obstruct the expected unimpeded extension, and whether they can be removed.

Branch pipelines should be excluded from the prestressing procedure in case that they are part of the prestressing section. T-branches can be used as intermediate measuring spots. However if branch pipelines have to be included into the prestressing, it should be also considered that the unimpeded extension of the pipeline will not be blocked.

In case that the prestressing section will run parallel to a front of houses or other buildings in a distance of \(\leq 5 \mathrm{~m}\), the corresponding wall ducts should be fixed respectively covered with concrete first after completion of the thermal prestressing. Without considering this, the damage of the sealing rings and the preinsulated jacket-pipes will be pre-programmed. This will lead to a warranty exclusion.

For an exact recording of the prestressing, the measuring installations mentioned in the isoplus-trench-design have to be installed as a fix profile. For that it will be helpful to fix a weather resistance millimetre scale on the jacket-pipe.

Thereafter the prestressing section up to the pipe axis, that means up to 3:00 respectively 9:00 o'clock position, has to be filled orderly with sand in layers, grain 0-4 mm (class NS 0/2 acc. DIN EN 12620 ) which has to be compressed manually.

The assembling space between the pipes should especially be considered. The fitting pieces and the measuring installation will not be filled with sand.


Thereafter the sand-saddle respectively the supporting fix-point has to be filled and compressed to the upper edge of the soil- respectively street, in accordance to the concept. The saddle has to be provided at road crossings or eventual existing bowed pipes. As an advantage these areas may then be sanded and filled completely with excavation material.

The bowed pipes have to be supported lateral in case that the sand-saddle cannot be placed. Additionally the sand-bed has to be completed only on the complete length of the bowed pipes up to 10 cm above the pipe crown. These two measurements will guarantee that the axial pipe extension will move over the bowed pipes during the prestressing, and that these will not buckle horizontal or vertically.

If the free expansion should be provided one-sided, i. e. in case of a prestressing with the operating medium from the heating plant, the sand-saddle has to be filled at the end of the opposite side of the measuring spot. This end at the sand-saddle has to be supported additionally lateral, in order to guarantee an one-sided unimpeded expansion movement. In case of a prestressing with the existing medium the sand-saddle can be placed just at one end of the prestressing section, and has not to be placed in the middle.

10 HANDLING PIPE CONSTRUCTION
10.2 Pipe Construction - Buried Laying

\section*{Execution and Recording}

The length- and measuring data described in this section, like \(\left[\Delta L_{r}\right],\left[M_{L}\right]\) etc., can be seen from the isoplus-trench-design and from the prestressing concept. Heating of the pipes has to be carried out slowly and parallel, in order to avoid any temperature shocks.

As soon as the prestressing temperature \(\left[\mathrm{V}_{\mathrm{T}}\right]\) has been reached, it has to be kept constant. The calculated unimpeded modification of length \(\left[\Delta L_{r}\right]\) will be checked at the measure installations and recorded. The effective result [ \(\Delta \mathrm{L}_{\mathrm{t}}\) ] will be recorded in the concept.

ATTENTION: The prestressing temperature \(\left[\mathrm{V}_{\mathrm{T}}\right]\) has to be kept, the effective expansion movement [ \(\Delta L_{t}\) ] may slightly differ from the calculated value [ \(\Delta L_{r}\) ]. In case of bigger differences the responsible design and construction manager or/and engineer has to be informed!


Thereafter the 10 cm sand-bed (class NS 0/2) has to be established and compressed manually all over the total prestressing section, except of the measure installations. Now the pipe trench has to be refilled and compressed with excavation material, except of the already mentioned spots, according to DIN 18196, ZTV A - StB just as ZTV E StB.

The prestressing temperature has further to be kept.

If the re-filling of the total prestressing section cannot be made in one procedure, the minimum filling length \(\left[\mathrm{M}_{\mathrm{L}}\right]\) on both sides have to be strictly kept. It will be not admissible to distribute the required soil on to the total section length. The remaining length \(\left[R_{L}\right]\) should be filled thereafter, however the trench at this area may be also filled later on.

The change of length \(\left[\Delta L_{r}\right]\) will be checked again at the measuring equipment and the read off result \(\left[\Delta L_{t}\right]\) will be also mentioned in the protocol. Thereafter the prestressing unit can be switched off. However the measuring equipment will still remain in order to check the calculated length contraction \(\left[\Delta \mathrm{K}_{\mathrm{r}}\right]\) after the cooling period and in order to secure the measured result \(\left[\Delta \mathrm{K}_{\mathrm{t}}\right]\) in the protocol.

At prestressing of several sections following after each other, the contraction [ \(\Delta \mathrm{K}\) ] has to be added to the unimpeded expansion [ \(\Delta \mathrm{L}\) ] , in order to reach the total change [ \(\Delta \mathrm{L}_{\mathrm{g}}\) ]. Additional has to be considered that the sliding areas have to be defined again after every section at the stagerespectively step-back prestressing procedure.

For registering of all \(\Delta\)-values it will be strictly necessary that the client will determine a responsible chief construction manager, who will also supervise the prestressing procedure and who will confirm with his signature the effective data in the protocol respectively in the concept.

\section*{Final Works resp. Final Assembling}

At the completion of the prestressing, recorded in the concept and in the report, the measuring equipment has to be removed and the pre-heated fitting pieces (PS) should be welded in. Fitting pieces should be as short as possible. This can be reached under consideration that the assembling gap for a fitting piece may correspondent maximum to the 1,5 -fold of the unimpeded expansion movement [ \(\Delta \mathrm{L}\) ].

Thereafter the fitting piece will be insulated by use of the long-connection coupler slipped over before, the expansion pad (DP) will be assembled at these areas and the sanding and re-filling of the remaining pipeline will be carried out.



\section*{Prestressing of Expansion-Angle resp. -Pad}

The length reductions of L-, Z- or U-elbows as well as those of the expansion pads thickness by thermal prestressing, is a well known and in the pipeline construction accepted technology, which will be mainly used for bigger dimensions and especially in the accepted "Operational Self Prestressing" technology. It will be used wherever essential change of length have to be compensated or if the normal calculated length cannot be reached by use of an expansion branch, due to local regulations.

Practically this minimisation can be reached by using the thermal prestressing procedure. This will be made by subsequent sanding and filling of the expansion pads. The first expansion of the pipes has not been compensated by the pads, only the remaining movement will be compensated by the pads. The static calculations will be made not with the effective pre-heating temperature \(\left[\mathrm{V}_{\mathrm{T}}\right]\), but with a hypothetical pre-heating temperature \(\left[\mathrm{V}_{\mathrm{Tf}}\right]\), in order to simulate the occurring friction forces \(\left[\mathrm{F}_{\mathrm{R}}\right]\).
\[
\mathrm{V}_{\mathrm{Tf}}=\mathrm{T}_{\mathrm{E}}+\frac{\mathrm{T}_{\mathrm{B}}-\mathrm{T}_{\mathrm{E}}}{3} \quad\left[{ }^{\circ} \mathrm{C}\right] \quad \text { i. e.: } \quad \mathrm{V}_{\mathrm{Tf}}=10+\frac{130-10}{3}=50^{\circ} \mathrm{C}
\]

Because of this calculated necessary step, the first expansion of the pipeline will be no longer statically considered.

In contrary to the thermal prestressing at open pipe trench, no protocol will be required at the expansion branch- respectively expansion pad- prestressing. The working procedure can be carried out analogous to point 1. and 2. of the already described process. Fitting pieces will be not required. Thereafter the following working steps will be carried out:
1. Expansion pads will be assembled at L-, Z- or U-elbows in tension free position at cold pipeline. In contrary to the mechanical prestressing these areas will be not sanded and filled or compressed.
2. Now the complete PJP-pipeline will be sanded, filled and compressed up to approx. 1-2 m before the expansion pads, according to the standard and to the guidelines. The open areas can be seen from the isoplus-trench- respectively from the pre-heating design.

3. Thereafter the net will be put in operation or heated up to the effective prestressing temperature \(\left[V_{T}\right]\) of i. e. \(70^{\circ} \mathrm{C}\left(T_{B}=130^{\circ} \mathrm{C}\right)\), by use of a mobile prestressing unit.
4. As soon as \(\mathrm{V}_{\mathrm{T}}\) will be reached the sand-bed will be carried out at the still open padding areas in order to fill and to compress these pits thereafter. The prestressing temperature has to be kept constant. The expansion branches are now free of tension.
5. Therefore the first expansion will be not be compensated by the expansion pads and the branch will be pre-stressed about \(50 \%\).
6. During heating to the maximum operating temperature \(\left[T_{\mathrm{B}}\right]\) of i. e. \(130^{\circ} \mathrm{C}\) point \(\boldsymbol{A}\) will move to \(\boldsymbol{B}\) about \(\Delta \mathrm{L} / 2\) respectively to \(\boldsymbol{C}\) when cooling down to \(10^{\circ} \mathrm{C}\) also about only \(\Delta \mathrm{L} / 2\).


\title{
10 HANDLING PIPE CONSTRUCTION
}

\subsection*{10.2.17 Assembling Connection Coupler isopex}

The isopex-pipe will be cutted rectangular, and insulated to a maximum lengths of 150 mm . Both pipe ends should touch straight respectively absolutely plain against each other, as this system allows generally no crease or angles.

After cutting and removing of insulation the pipes should be ridged by use of a suitable tool.


ATTENTION: The red diffusion barrier of the heating pipe may not be damaged. Thereafter the pressring has to be put on to the isopex-pipe and the PEX-ends should be enlarged two times by using a expanding pincer, for a period of 5 seconds and shifted by \(30^{\circ}\).

The connection part should be put into the isopex-pipe end up to the stop position of the flange. Thereafter the press ring should be pressed to theflange of the connecting part; eventually a rubberor wooden-hammer may be used.

The press-pincer (can be bought or rented, see chapter 7.2.1 will now put in position and pressing will be carried out in a way that the blocks of the pincer, respectively the rings will touch each other at the flange.

Before the pressing procedure all materials have to be cleaned. Lubricating of the pipe will be helpful. At assembling temperatures about \(\pm 0^{\circ} \mathrm{C}\) the carrier pipe should be warmed up carefully to \(\approx 20^{\circ} \mathrm{C}\) by using a hot air-blow

Fitting couplings will be assembled with the pipes to the outside thread or to the welding end. In case that a fitting coupling with press fitting and welding end will be used as end piece in the soil, the following has to be considered:


Before the fitting coupling will be pressed, a piece of steel pipe with a minimum length of 200 mm has to be closed with a torospherical head. This piece of steel pipe will be welded autogenously or electrically to the welding end. Thereafter the prepared component will be pressed on to the isopexpipe. Post insulation will be made by use of a long-end coupler.

The next step of assembling will be to cut off the coupler and the torospherical head and the next fitting coupling will be welded. The previous pressing has to be cooled in order to avoid that it will get loose. Thereafter again the fitting coupling will be assembled on to the isopex pipe. Post insulation will be made by use of long-connection coupler. Possible kind of couplers see capter 6.

10 HANDLING PIPE CONSTRUCTION
10.2 Pipe Construction - Buried Laying

The isopex-pipe will be cutted rectangular, and insulated to a maximum lengths of 150 mm . Both pipe ends should touch straight respectively absolutely plain against each other, as this system allows generally no crease or angles.


After cutting and removing of insulation the pipes should be ridged by use of a suitable tool.

ATTTENTION: The red diffusion barrier of the heating pipe may not be damaged. Thereafter the screwed-caps should be pushed with the clampring on to the isopex-pipe.

For pipe dimensions 90 and 110 mm the supporting ring should be pressed manually into the pipe, by using a rubber-hammer. Any damages of the support-ring and the pipe end should be avoided.


Now the isopex-pipe end should be pressed into the cylindrical-threaded-neck until to the stop position.

Thereafter the screwed-cap should be fixed sufficiently. Screwed connections for isopex-pipes with a minimum temperature of approx. \(60^{\circ} \mathrm{C}-80^{\circ} \mathrm{C}\) should be fixed again as soon as they have reached the operating temperature. For post insulation with PUR-foam at the connection spots, the temperature should be drop down to \(45^{\circ} \mathrm{C}\).

In case of fitting couplings the assembling of the continuing pipe will be made to the outside thread or to the welding end.

\subsection*{10.3.1 General / Method of Pipe-Laying / Transition Free- to Buried Laying}

\section*{General}

In case of spiro-fold jacket-pipes for open line constructions inside or outside of buildings, as well as in case of preinsulated PEHD-jacket-pipes inside of buildings, the pipe layer has to provide and to install the additional required assembling scaffolds, until the pipe laying and post-insulation works will be completed. Also a third party will be responsible for the procurement of the required support- and supporting structure, in pendulous construction, or sliding bearing.

The relevant regulations for prevention of accidents as well as the required combustion-, cold-, sonic-, heat-, or/and civil defence have to be kept. The pipe clamps respectively -bearings have to be fixed only at the jacket-pipe of all isopluspipes. This will effective avoid that any moisture-, cold-, or/and heat-bridges will occur.

\section*{Method of Pipe-Laying}

The pipe-laying can be made as high-, socle- or/and support line as well as on a pipe-bridge in spandrel-braced or hanging version. All methods of pipe-laying have to guarantee a sliding respectively pendulous bearing, due to the eventually occurring change of pipe length. It has to differentiate between compound and sliding system.

In case of a compound pipe the three frictional connected components ( carrier pipe + insulation + jacket-pipe ) will constantly expand in axial direction. At the sliding system only the carrier pipe will expand, because of the missing frictional connection to the insulation respectively to the jacket-pipe.


\section*{Transition Free- to Buried Laying}

Providing that a static approval will be available, direct transitions from buried preinsulated pipes to open line layed spiro-fold jacket-pipes may be assembled without any restrictions. However it has to be considered that the last metal coupler should be installed \(100 \%\) outside of the soil-area.

Within this metal coupler an end cap has to be installed additionally as system-separation, according chapter 10.2.12. The upward PJP-elbow in the soil-area has to be equipped with expansion pads in accordance to the isoplus-trench-design.


\section*{10．3．2 Bearing Distance}

\section*{Bearing Distance}

In order to determine the possible respectively maximum admissible bearing distance \(\left[\mathrm{L}_{\mathrm{S}}\right]\) of a pipeline，the following parameter should be known：
\(\Rightarrow\) Admissible pipe bowing \([f]\) in mm
\(\Rightarrow\) Moment of inertia of the pipe［I］in \(\mathrm{cm}^{4}\)
\(\Rightarrow\) Own pipe weight \(\left[F_{G}\right]\) in \(\mathrm{kg} / \mathrm{cm}\)
The pipe bowing［f］in the middle of the field should be between 2 mm and maximum 4 mm ．


For better interpretation the following formula are mentioned parallel with an example．For this will be valid：DN \(150\left(\mathrm{~d}_{\mathrm{a}}=168,3 \mathrm{~mm} ; \mathrm{s}_{1}=4,0 \mathrm{~mm} ; \mathrm{d}_{\mathrm{i}}=160,3 \mathrm{~mm}\right)\) with PUR－insulation and PEHD－jacket－ pipe（ \(D_{a}=250,0 \mathrm{~mm} ; \mathrm{s}_{2}=4,5 \mathrm{~mm} ; \mathrm{D}_{\mathrm{i}}=241,0 \mathrm{~mm}\) ）．As carrier pipe a black steel（ P 235 GH ）filled with water has been considered．

The moment of inertia［1］will be calculated as follows：
\[
\begin{aligned}
& \mathrm{I}=\begin{array}{c}
\pi \\
64
\end{array} \cdot\left(\mathrm{~d}_{\mathrm{a}}{ }^{4}-\mathrm{d}_{\mathrm{i}}{ }^{4}\right)\left[\mathrm{cm}^{4}\right] \quad \Rightarrow \quad \mathrm{I}=\frac{3,1416}{64} \cdot\left(16,83^{4}-16,03^{4}\right)\left[\mathrm{cm}^{4}\right] \\
& \text { Result: } \quad \mathrm{I}=697,09 \mathrm{~cm}^{4} \\
& \begin{array}{lll}
\pi & =3,1416 \\
64 & =\text { Constant } & {[-]}
\end{array} \\
& d_{a}=\text { Outside diameter jacket-pipe }[\mathrm{cm}] \\
& \mathrm{d}_{\mathrm{i}}=\text { Inside diameter medium-pipe } \quad[\mathrm{cm}]
\end{aligned}
\]

For the pipe weight force \(\left[\mathrm{F}^{\prime}{ }_{G}\right]\) will be valid：
\(F_{G}^{\prime}=G_{I R}+G_{D A ̈}+G_{A R}+G_{M F}[\mathrm{~kg} / \mathrm{m}] \Rightarrow F_{G}^{\prime}=16,25+1,87+3,30+20,18[\mathrm{~kg} / \mathrm{m}]\)
Result：\(F_{G}^{\prime}=41,60 \mathrm{~kg} / \mathrm{m} \quad\) or：\(F_{G}^{\prime}=0,416 \mathrm{~kg} / \mathrm{cm} \quad\) or：\(F_{G}^{\prime}=41,60 \cdot 9,81=408,10 \mathrm{~N} / \mathrm{m}\)
The single weight \(\left[\mathrm{G}_{\mathrm{xy}}\right]\) will be calculated as follows：
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{G}_{\mathbb{R}}=\text { Weight inside resp. carrier pipe } \\
& \mathrm{G}_{\mathbb{R}}=\left(\mathrm{d}_{\mathrm{a}}-\mathrm{s}_{1}\right) \cdot \pi \cdot \mathrm{s}_{1} \cdot 1 \cdot \rho_{\mathrm{IR}} \quad[\mathrm{~kg} / \mathrm{m}] \\
& \mathrm{G}_{\mathbb{R}}=(1,683-0,04) \cdot 3,1416 \cdot 0,04 \cdot 10 \cdot 7,87 \\
& \text { Result: } \quad \mathrm{G}_{\mathbb{R}}=16,25 \mathrm{~kg} / \mathrm{m}
\end{aligned}
\]}} & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& G_{D A ̈}=\text { Weight insulation } \\
& G_{D A}=\left[\left(D_{i}: 2\right)^{2}-\left(d_{a}: 2\right)^{2}\right] \cdot \pi \cdot 1 \cdot \rho_{D A} \quad[\mathrm{~kg} / \mathrm{m}] \\
& \mathrm{G}_{D \ddot{A}}=\left[(2,41: 2)^{2}-(1,683: 2)^{2}\right] \cdot 3,1416 \cdot 10 \cdot 0,08 \\
& \text { Result: } \quad G_{D A}=1,87 \mathrm{~kg} / \mathrm{m}
\end{aligned}
\]}} \\
\hline & & & & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{G}_{\mathrm{AR}}=\text { Weight outside resp. jacket-pipe } \\
& \mathrm{G}_{\mathrm{AR}}=\left(\mathrm{D}_{\mathrm{a}}-\mathrm{s}_{2}\right) \cdot \pi \cdot \mathrm{s}_{2} \cdot 1 \cdot \rho_{\mathrm{AR}}[\mathrm{~kg} / \mathrm{m}] \\
& \mathrm{G}_{\mathrm{AR}}=(2,5-0,045) \cdot 3,1416 \cdot 0,045 \cdot 10 \cdot 0,95 \\
& \text { Result: } \quad \mathrm{G}_{\mathrm{AR}}=3,30 \quad \mathrm{~kg} / \mathrm{m}
\end{aligned}
\]}} & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{G}_{\mathrm{MF}}=\text { Weight filling of carrier pipe } \\
& \mathrm{G}_{\mathrm{MF}}=\left(\mathrm{d}_{\mathrm{i}}: 2\right)^{2} \cdot \pi \cdot 1 \cdot \rho_{\mathrm{MF}}[\mathrm{~kg} / \mathrm{m}] \\
& \mathrm{G}_{\mathrm{MF}}=(1,603: 2)^{2} \cdot 3,1416 \cdot 10 \cdot 1,0 \\
& \text { Result: } \quad \mathrm{G}_{\mathrm{MF}}=20,18 \mathrm{~kg} / \mathrm{m}
\end{aligned}
\]}} \\
\hline & & & & & \\
\hline \multicolumn{2}{|l|}{\(\rho_{\mathrm{xy}}=\) Material apparent density} & \multicolumn{4}{|l|}{\(1=10 \mathrm{dm}\)} \\
\hline \(\rho_{\mathbb{R}}=7,87 \mathrm{~kg} / \mathrm{dm}^{3}\)（Steel） & & \(\rho_{\text {DA }}\) & \(=0,08 \mathrm{~kg} / \mathrm{dm}^{3}\) & （PUR） & \\
\hline \(\rho_{\text {AR }}=0,95{\mathrm{~kg} / \mathrm{dm}^{3}}^{\text {（PEHD）}}\) & & & \(=1,00 \mathrm{~kg} / \mathrm{dm}^{3}\) & （Water） & \\
\hline \(d_{a}=\) Outside diameter carrier pipe & ［dm］ & & \(=\) Outside diamete & er jacket－pipe & ［dm］ \\
\hline \(\mathrm{d}_{\mathrm{i}} \quad=\) Inside diameter carrier pipe & ［dm］ & & \(=\) Inside diameter & jacket－pipe & ［dm］ \\
\hline \(\mathrm{s}_{1}=\) Wall thickness carrier pipe & ［dm］ & \(\mathrm{S}_{2}\) & \(=\) Wall thickness j & acket－pipe & ［dm］ \\
\hline
\end{tabular}

\section*{10 HANDLING PIPE CONSTRUCTION}

For determining the bearing distance [ \(L_{s}\) ] for pipes on three bearings will be valid:
\begin{tabular}{|c|c|c|c|c|}
\hline LS & & \[
4_{\sqrt{\prime}}
\] & \[
\frac{f}{F_{G}^{\prime} \cdot 2,4}
\] & \\
\hline & & \(\sqrt[4]{ }\) & \[
\frac{4 \cdot 697}{0,416}
\] & \\
\hline \multicolumn{5}{|l|}{Result (PEHD-MR): \(\mathrm{L}_{\mathrm{S}}=7,21 \mathrm{~m}\)} \\
\hline \[
\begin{aligned}
& f \\
& I^{\prime} \\
& F_{G}^{\prime}
\end{aligned}
\] & & \multicolumn{3}{|l|}{Moment of inertia [ \(\left.\mathrm{cm}^{4}\right]\) pipe weight force \([\mathrm{kg} / \mathrm{cm}]\)} \\
\hline 2,48 & \(=\) & Const & & \\
\hline \(\mathrm{d}_{\mathrm{a}}\) & \(=\) & \multicolumn{3}{|l|}{Outside diameter carrier pipe} \\
\hline s & \(=\) & \multicolumn{3}{|l|}{Wall thickness carrier pipe acc. to isoplus} \\
\hline Da & \(=\) & \multicolumn{3}{|l|}{Outside diameter jacket-pipe} \\
\hline G & \(=\) & \multicolumn{3}{|l|}{Weight pipe incl. water} \\
\hline \(f\) & \(=\) & \multicolumn{3}{|l|}{Admissible pipe bowing} \\
\hline \(L_{\text {s }}\) & \(=\) & \multicolumn{3}{|l|}{Bearing distance f. bearing to bearing} \\
\hline \(\mathrm{B}_{\text {SCH }}\) & \(=\) & \multicolumn{3}{|l|}{Required bearing- resp. clamp width} \\
\hline
\end{tabular}
[m]
[m]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Dimensions carrier pipe} & \multicolumn{6}{|c|}{Jacket-pipe (MR) standard} \\
\hline \multicolumn{2}{|l|}{Norminal Diameter} & \multirow[t]{2}{*}{Outside-
\(\varnothing\)
\(\mathbf{D}_{\mathbf{a}}\)
in mm} & \multirow[t]{2}{*}{Wallthickn. s in mm} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { Outside- } \\
\varnothing \\
\boldsymbol{D}_{a} \\
\text { in } \mathrm{mm}
\end{array}
\]} & \multirow[b]{2}{*}{Weight G in \(\mathrm{kg} / \mathrm{m}\)} & \multicolumn{2}{|l|}{\(\mathrm{f}=2 \mathrm{~mm}\)} & \multicolumn{2}{|l|}{\(\mathrm{f}=4 \mathrm{~mm}\)} \\
\hline DN & Inches & & & & & \[
\begin{gathered}
\mathrm{L}_{\mathrm{s}} \\
\text { in } \mathrm{m}
\end{gathered}
\] & \[
\begin{gathered}
\mathbf{B}_{\text {sch }} \\
\text { in } \mathrm{mm}
\end{gathered}
\] & \[
\begin{array}{r}
L_{s} \\
\text { in } \mathrm{m} \\
\hline
\end{array}
\] & \[
\begin{gathered}
\mathbf{B}_{\text {sch }} \\
\text { in } \mathrm{mm}
\end{gathered}
\] \\
\hline 20 & 3/4* \({ }^{\text {a }}\) & 26,9 & 2,3 & 90 & 0,036 & 2,35 & 10 & 2,80 & 10 \\
\hline 25 & 1" & 33,7 & 3,6 & 90 & 0,044 & 2,75 & 20 & 3,27 & 20 \\
\hline 32 & \(11 / 4{ }^{\prime \prime}\) & 42,4 & 3,6 & 110 & 0,059 & 3,07 & 20 & 3,65 & 20 \\
\hline 40 & \(11 / 2^{\text {a }}\) & 48,3 & 3,6 & 110 & 0,066 & 3,30 & 20 & 3,93 & 20 \\
\hline 50 & \(2^{\prime \prime}\) & 60,3 & 3,6 & 125 & 0,090 & 3,73 & 30 & 4,43 & 30 \\
\hline 65 & \(2^{1 / 2}{ }^{\text {u }}\) & 76,1 & 3,6 & 140 & 0,120 & 4,16 & 30 & 4,95 & 40 \\
\hline 80 & \(3{ }^{\prime \prime}\) & 88,9 & 3,6 & 160 & 0,156 & 4,50 & 40 & 5,35 & 40 \\
\hline 100 & \(4^{\prime \prime}\) & 114,3 & 3,6 & 200 & 0,235 & 5,07 & 50 & 6,03 & 60 \\
\hline 125 & 5 " & 139,7 & 3,6 & 225 & 0,312 & 5,51 & 60 & 6,56 & 70 \\
\hline 150 & 6 & 168,3 & 4,0 & 250 & 0,422 & 6,04 & 80 & 7,18 & 100 \\
\hline 200 & \(8{ }^{\prime \prime}\) & 219,1 & 4,5 & 315 & 0,679 & 6,75 & 110 & 8,03 & 130 \\
\hline 250 & 10" & 273,0 & 5,0 & 400 & 1,006 & 7,42 & 140 & 8,82 & 170 \\
\hline 300 & 12" & 323,9 & 5,6 & 450 & 1,358 & 8,06 & 190 & 9,58 & 220 \\
\hline 350 & 14" & 355,6 & 5,6 & 500 & 1,592 & 8,31 & 200 & 9,89 & 240 \\
\hline 400 & \(16{ }^{\text {a }}\) & 406,4 & 6,3 & 560 & 2,044 & 8,89 & 250 & 10,58 & 290 \\
\hline 450 & \(18^{\prime \prime}\) & 457,2 & 6,3 & 630 & 2,527 & 9,22 & 280 & 10,97 & 330 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\[
\begin{array}{|c}
\text { Diameter } \\
\text { in } \\
\text { DN }
\end{array}
\]} & \multicolumn{6}{|c|}{Jacket-pipe (MR) 1x reinforced} & \multicolumn{6}{|c|}{Jacket-pipe (MR) 2x reinforced} \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{c}
\hline Outside- \\
\(\varnothing\) \\
\(\mathbf{D}_{\mathbf{a}}\) \\
in mm \\
\hline
\end{tabular}} & \multirow[b]{2}{*}{Weight G in kg/m} & \multicolumn{2}{|r|}{\(\mathrm{f}=2 \mathrm{~mm}\)} & \multicolumn{2}{|r|}{\(\mathrm{f}=4 \mathrm{~mm}\)} & \multirow[t]{2}{*}{Outside-
\(\varnothing\)
\(\mathbf{D}_{\mathbf{a}}\)
in mm} & \multirow[b]{2}{*}{Weight G in \(\mathrm{kg} / \mathrm{m}\)} & \multicolumn{2}{|c|}{\(\mathrm{f}=2 \mathrm{~mm}\)} & \multicolumn{2}{|c|}{\(\mathrm{f}=4 \mathrm{~mm}\)} \\
\hline & & & \[
\begin{array}{r}
L_{s} \\
\text { in } \mathrm{m} \\
\hline
\end{array}
\] & \[
\begin{gathered}
\mathbf{B}_{\text {Sch }} \\
\text { in } \mathrm{mm}
\end{gathered}
\] & \[
\begin{array}{r}
\mathrm{L}_{\mathrm{s}} \\
\text { in } \mathrm{m} \\
\hline
\end{array}
\] & \[
\begin{gathered}
\mathbf{B}_{\text {Sch }} \\
\text { in } \mathrm{mm}
\end{gathered}
\] & & & \[
\begin{gathered}
\mathrm{L}_{\mathrm{s}} \\
\text { in } \mathrm{m}
\end{gathered}
\] & \[
\begin{array}{r}
\mathbf{B}_{\text {sch }} \\
\text { in } \mathrm{mm}
\end{array}
\] & \[
\begin{gathered}
\mathrm{L}_{\mathrm{s}} \\
\text { in } \mathrm{m}
\end{gathered}
\] & \[
\begin{gathered}
\mathbf{B}_{\text {Sch }} \\
\text { in } \mathrm{mm}
\end{gathered}
\] \\
\hline 20 & 110 & 0,041 & 2,27 & 10 & 2,70 & 10 & 125 & 0,046 & 2,21 & 10 & 2,63 & 10 \\
\hline 25 & 110 & 0,049 & 2,67 & 10 & 3,17 & 20 & 125 & 0,054 & 2,61 & 10 & 3,10 & 20 \\
\hline 32 & 125 & 0,063 & 3,01 & 20 & 3,58 & 20 & 140 & 0,068 & 2,96 & 20 & 3,52 & 20 \\
\hline 40 & 125 & 0,071 & 3,25 & 20 & 3,87 & 20 & 140 & 0,075 & 3,20 & 20 & 3,80 & 20 \\
\hline 50 & 140 & 0,095 & 3,68 & 20 & 4,38 & 30 & 160 & 0,102 & 3,62 & 20 & 4,30 & 30 \\
\hline 65 & 160 & 0,127 & 4,10 & 30 & 4,88 & 30 & 180 & 0,134 & 4,05 & 30 & 4,81 & 30 \\
\hline 80 & 180 & 0,163 & 4,45 & 40 & 5,29 & 40 & 200 & 0,171 & 4,40 & 30 & 5,23 & 40 \\
\hline 100 & 225 & 0,245 & 5,01 & 50 & 5,96 & 50 & 250 & 0,256 & 4,96 & 40 & 5,90 & 50 \\
\hline 125 & 250 & 0,323 & 5,46 & 60 & 6,50 & 70 & 280 & 0,337 & 5,40 & 50 & 6,43 & 60 \\
\hline 150 & 280 & 0,437 & 5,99 & 80 & 7,12 & 90 & 315 & 0,470 & 5,88 & 70 & 6,99 & 80 \\
\hline 200 & 355 & 0,704 & 6,69 & 100 & 7,95 & 120 & 400 & 0,734 & 6,62 & 100 & 7,87 & 110 \\
\hline 250 & 450 & 1,043 & 7,35 & 130 & 8,74 & 160 & 500 & 1,083 & 7,28 & 120 & 8,66 & 150 \\
\hline 300 & 500 & 1,398 & 8,00 & 170 & 9,51 & 200 & 560 & 1,449 & 7,93 & 160 & 9,43 & 190 \\
\hline 350 & 560 & 1,643 & 8,25 & 190 & 9,81 & 220 & 630 & 1,740 & 8,13 & 170 & 9,67 & 210 \\
\hline 400 & 630 & 2,141 & 8,79 & 230 & 10,45 & 270 & 670 & 2,183 & 8,75 & 220 & 10,40 & 260 \\
\hline 450 & 670 & 2,569 & 9,19 & 270 & 10,92 & 320 & 710 & 2,614 & 9,15 & 260 & 10,88 & 310 \\
\hline
\end{tabular}

All weight data are valid for carrier pipes acc. to isoplus with SPIRO-jacket-pipe incl. water content.

\subsection*{10.3.3 Pipe Clamps}

Concerning the construction of pipe clamps we have also to differentiate between compound- and sliding system. At compound pipes the clamps may not obstruct the expected expansion movement, that means they have to include a sliding insert or they have to be fixed on axial-, and near to the expansion elbows also on lateral flexible pipe bearings.

In case of sliding systems the pipe clamps may be fixed directly at the jacket pipes, as this will move only slightly. In connection with thermoplastic jacket-pipes it will be possible, that changing of envi-ronment- respectively air-temperatures may cause a change of length. Therefore the bearing of the pipe clamps should be also flexible for sliding systems.

The pipe clamps has to be wide enough resp. should be equipped with a long enough bearing in order to avoid that the maximum admissible pressure load [ \(\sigma_{\mathrm{p}}\) ] of the compound pipe will exceed. For PEHD- and Spiro-jacket-pipes as compound- and sliding system will be valid \(\Rightarrow \sigma_{p}=\leq 0,15 \mathrm{~N} / \mathrm{mm}^{2}\) !

In circumference direction the clamp will be effective as a pipe bearing only to a third of the circumference length. From this the effective clamp length in circumference direction \(\left[\mathrm{U}_{\mathrm{L}}\right]\) will result:
\[
\begin{array}{ll}
\mathrm{U}_{\mathrm{L}} & =\mathrm{D}_{\mathrm{a}} \cdot \pi: 3  \tag{mm}\\
\mathrm{U}_{\mathrm{L}} & =250 \cdot 3,1416: 3
\end{array}
\]

Result: \(\quad U_{\mathrm{L}}=261,8 \mathrm{~mm}\)
From the calculated bearing width \(\left[\mathrm{L}_{s}\right]\) in m , weight force \(\left[\mathrm{F}^{\prime}{ }_{\mathrm{G}}\right]\) in \(\mathrm{N} / \mathrm{m}\) and circumference length \(\left[\mathrm{U}_{\mathrm{l}}\right.\) ] the following clamp width [ \(\left.\mathrm{B}_{\text {Sch }}\right]\) will result under consideration of \(\sigma_{p}\) length direction of pipe:
\(\mathrm{B}_{S c h} \quad=\mathrm{L}_{\mathrm{S}} \cdot \mathrm{F}_{\mathrm{G}}: \sigma_{\mathrm{p}}: \mathrm{U}_{\mathrm{L}} \cdot \mathrm{S}_{\mathrm{D}} \quad\) [mm]
\(B_{S c h} \quad=7,21 \bullet 408,1: 0,15: 261,8 \cdot 1,2[m m]\)
Result: \(\quad B_{\text {Sch }}=\approx 90 \mathrm{~mm}\)
\(S_{D} \quad=\) Safety correction value


For bigger pipe dimensions a required clamp width \(>200 \mathrm{~mm}\) can be possible. Because these clamps will be mostly not available, the required width can be distributed to a double clamp. A pipe half-shell should be put on this double clamp in order to distribute the weight. First then the isoplus-pipe will be layed in.

In case that the pipeline will be hanged by use of galvanized strap retainers at two spots instead of the double clamp, the installation of the half-shell will be strictly necessary. Strap retainers without pipe half-shells will damage the jacket-pipe.

\title{
10 HANDLING PIPE CONSTRUCTION
}

\subsection*{10.3.4 Support Construction}

Supports can be in pendulous-hanging or sliding spandrelbraced construction. The weight- load resulting from the support distance to the pipe-shell, which will effect as tensile stress in case of hanging construction and as compressive strain in case of spandrel-braced construction, has to be considered concerning the support variations. Of course may several pipes placed over- or under each other, the load will increase accordingly.

For fixing the supports at the construction substance (concrete ceiling, trapezoidal corrugations, steel-traverse etc.) sliding carriages will be used, which are moving in sliding rails. This construction allows the compensation of the axial expansion movement of the pipeline. Complete sliding sets will be used for the area of the expansion elbows, where also the lateral expansion has to be considered. The sliding sets have to be installed at the sliding carrier, turned about \(90^{\circ}\) to the rail.

If fixed bearings- respectively fix-points should be required in consideration with the project work, it will be sufficient to fix them frictional at the jacket-pipe, in case of the compound system. Fixpoints for the sliding system "high temperature pipe" have to be installed at the carrier pipe. As fixed bearings also pre-fabricated fittings, see chapter 2.2 and 2.3, may be used. The axial force \(\left[F_{\mathrm{FL}}\right]\) resulting from the straight section and compensated from the fixed bearing, will be calculated per pipeline as follows:

\[
\begin{aligned}
& \mathrm{F}_{\mathrm{FL}}=\mathrm{F}_{\mathrm{G}} \quad \bullet \mu \quad \text { • } \mathrm{L}_{\mathrm{X}} \quad[\mathrm{~N}] \\
& \mathrm{F}_{\mathrm{FL}}=408,1 \cdot 0,1 \cdot 20,0[\mathrm{~N}] \\
& \text { Result: } F_{F L} \quad=816,2 \mathrm{~N} \\
& F_{G}^{\prime} \quad=\text { pipe weight force }[\mathrm{N} / \mathrm{m}] \\
& \mu \quad=\text { Friction number jacket pipe to support resp. clamp } \\
& \Rightarrow \text { Steel / Steel } \quad=0,5[-] \\
& \Rightarrow \text { Polyethylene / Steel }=0,1[-] \\
& L_{x} \quad=\text { Pipeline length from fixed bearing to the next compensation spot }[m]
\end{aligned}
\]


10 HANDLING PIPE CONSTRUCTION 10.4 Check List for Pipe Construction

\subsection*{10.4.1 Building Site - Quality Assurance}

For building site it will be necessary to provide a guideline for a quality performance of the single working steps, in order to reach an optimization of the installing situation for preinsulated jacket pipes. This guideline will be valid in the same manner for civil underground engineering, pipe layer and pipe manufacturer.
\begin{tabular}{|c|c|}
\hline Working Step & Execution and result \\
\hline Pipe-bars - storage outside of the trench & - Piling of pipe bars on sand-bed or wide squared timber, which will avoid a pressing of the insulation; lateral security of pile in accordance to height \\
\hline Storage of fittings & - Stored horizontal on stone-free ground and ordered to dimensions \\
\hline Accessories - storage of sealing rings, couplers, expansion pads etc. & - Storage in container, or protected against weather conditions \\
\hline Storage of PUR-foam and shrinking material & - Stored in ambient temperature without direct sun irradiation \\
\hline Functional check and co-ordination of the tools for the relevant working steps & - Professional work can be only reached with suitable tools \\
\hline Putting in place of PJP-pipes and components & - Correct transport into the trench by use of textile belts Storage on squared timber, sand sacks or PUR-foam supports; ground clearance of at least 10 cm between pipe and trench bottom or sand-bedding with head-holes. \\
\hline Alignment of pipes and fittings in the trench & \begin{tabular}{l}
- Positioning of the leak detecting wires in accordance to the suppliers guideline. \\
- Slip over the coupler at the area of the welding spot
\end{tabular} \\
\hline Welding of pipes and fittings & \begin{tabular}{l}
- Considering of the instructions of the detailed estimate and the technical requirements for the later operating conditions \\
- Mitre cuts max. \(3^{\circ}\) at sliding area and \(5^{\circ}\) at bonding area. \\
- Weld seam test and release
\end{tabular} \\
\hline Creating of working space for coupler assembling & - Bearings should be at least in a distance of 1 m from the welding seam; head-holes has to be carried out in a way that a unimpeded working procedure according to the supplier guidelines will be possible \\
\hline Providing of fitting length & \begin{tabular}{l}
- Correct remove of insulation at the pipe ends of at least 150 mm without damage of the alarm wires \\
Do not leave cold water filling in the carrier pipe.
\end{tabular} \\
\hline Checking of pipeline before coupler assembling & \begin{tabular}{l}
- Temperature of carrier pipe max. \(45^{\circ} \mathrm{C}\), at least more than \(15^{\circ} \mathrm{C}\). \\
- Do not cut fittings and fitting pieces too much, in order to guarantee the required coupler support. \\
- Consider space requirement and technical practicability for the assembling fittings which will be carried out by the coupler assembler
\end{tabular} \\
\hline
\end{tabular}

See isoplus-assembling term - chapter 11.5.2
11.1 General
11.1.1 Description. ..... 11 / 1
11.2 Assembling Tools
11.2.1 Survey ..... 11 / 2-4
11.3 Assembling Connection Coupler
11.3.1 PEHD - Shrinkable Coupler ..... 11 / 5
11.3.2 isojoint \(X^{\circledR}\) - Shrinkable Coupler. ..... \(11 / 6\)
11.3.3 isojoint III \({ }^{\circledR}\) - Shrinkable Coupler ..... \(11 / 7\)
11.3.4 Electro - Welding Coupler \({ }^{\circledR}\) ..... \(11 / 8\)
11.3.5 isocompact \({ }^{\circledR}\) - Coupler ..... \(11 / 9\)
11.3.6 Spiro - Coupler ..... 11 / 10
11.3.7 Reduction - Shrinkable Coupler. ..... 11/11
11.3.8 Double Reduction - Shrinkable Coupler. ..... 11/11
11.3.9 Shrinkable End Coupler. ..... 11/11
11.3.10 Assembling Connection Coupler / Assembling Parts. ..... \(11 / 12\)
11.3.11 Assembling Half-Shells ..... 11/13
11.4 PUR - Foam Table
11.4.1 Foam-Table. ..... 11 / 14
11.5 Check List for Post Insulation
11.5.1 Building Site - Quality Assurance ..... 11/15-16
11.5.2 isoplus-Assembling Conditions. ..... 11/17-18

\subsection*{11.1 General}

\subsection*{11.1.1 Description}

All carrier pipe connections have to be insulated and sealed with connection couplers and PURfoam after recording of the agreed pressure tests. For warranty reasons these works, except of isocompact \({ }^{\circledR}\)-coupler, should be carried out by isoplus-educated assembling specialists, approved by AGFW- and BFW institute. The isocompact \({ }^{\circledR}\)-coupler may be used by the pipe laying company for independent post-insulation at the connection spots, except of double pipes.

All coupler connections made by isoplus will be clearly and durable marked by the installer, this includes:
\(\Rightarrow \quad\) Date of foaming
\(\Rightarrow \quad\) Length of coupler (hollow space)
\(\Rightarrow \quad\) Assembling date of sleeves
\(\Rightarrow \quad\) Name of installer
\(\Rightarrow\) Resistance values IPS-Cu \({ }^{\circledR}\) or IPS-NiCr \({ }^{\circledR}\)


This mark will allow a detailed identification of the executing installer and will increase the quality safety with their requirements. In case that the post-insulation should be nevertheless carried out by a third party, their ability has to be checked by presenting the AGFW-/BFW-test certificate before starting the assembling work. isoplus has to be informed about this in advance.

Current assembly-instructions of all isoplus connection-couplers are available in our downloadsection at www.isoplus.org.
Detailed information on wiring the leak detection and the differing wiring regulations for branching, as well as tables for the foam quantities to be used for the differing casing joint types, are also available in this section.

The preparing working steps 1 . to 11 . are valid concerning all coupler constructions delivered by isoplus. Additionally the isoplus-assembling conditions, see chapter \(\mathbf{1 1 . 5 . 2}\) have generally to be considered.

ATTENTION: Assembling works have to be carried out always with working overall and if necessary with gloves and protection glasses as well as in accordance with the general regulations for preventing accidents (UVV) requested protection clothes.

11 HANDLING POST INSULATION
11．2 Assembling Tools

\section*{11．2．1 Survey}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \＃ & Coupler construction／－type & PEHD Shrinkable & isojoint \(\mathrm{X}^{\text {® }}\) & isojoint \(\mathrm{III}^{\circledR}\) & Electro－ Welding \({ }^{\text {® }}\) & isocompact \({ }^{\text {® }}\) & Spiro \\
\hline 1 & Pressure set with pump and manometer & \(\checkmark\) & \(\checkmark\) & & \(\checkmark\) & & \\
\hline 2 & Workman＇s overall & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline 3 & Working gloves & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline 4 & Binding wire & \(\checkmark\) & \(\checkmark\) & & \(\checkmark\) & & \(\checkmark\) \\
\hline 5 & Drilling set，\(\varnothing=4,6\) and 10 mm & \(\checkmark\) & \(\checkmark\) & & \(\checkmark\) & & \(\checkmark\) \\
\hline 6 & Drilling machine（Akku or 230 V ） & \(\checkmark\) & \(\checkmark\) & & \(\checkmark\) & & \(\checkmark\) \\
\hline 7 & Triangular scraper & \(\checkmark\) & \(\checkmark\) & & \(\checkmark\) & & \(\checkmark\) \\
\hline 8 & High－grade－steel strap retainer & & & & \(\checkmark\) & & \\
\hline 9 & Gas－burner set & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & eventual \\
\hline 10 & Hammer，ca． 150 gramme & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline 11 & Hand－broom & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline 12 & Wood－driller with stopper & \(\checkmark\) & \(\checkmark\) & & \(\checkmark\) & & \\
\hline 13 & Insulation adhesive tape， 40 mm ，if required & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline 14 & Cable drum，if required & \(\checkmark\) & \(\checkmark\) & & \(\checkmark\) & & \(\checkmark\) \\
\hline 15 & Cartouche－press，if required & & & & & & \(\checkmark\) \\
\hline 16 & Marker，white＋black（water resistant） & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline 17 & Measuring tape and meter stick & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline 18 & Tongs for rivets & & & & & & \(\checkmark\) \\
\hline 19 & PE－burr－remover resp．－scraper & \(\checkmark\) & \(\checkmark\) & & \(\checkmark\) & & \\
\hline 20 & PE－cleaner resp．fat solvent & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline 21 & Propane－liquid gas bottle & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & eventual \\
\hline 22 & Cleaning rag，fluffy free & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline 23 & Umbrella if required & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline 24 & Stirring set for drilling machine & \(\checkmark\) & \(\checkmark\) & & \(\checkmark\) & & \(\checkmark\) \\
\hline 25 & Hand－saw & eventual & & \(\checkmark\) & & \(\checkmark\) & eventual \\
\hline 26 & Peel－driller，conical，size M 3 & \(\checkmark\) & \(\checkmark\) & & \(\checkmark\) & & \\
\hline 27 & Foaming machine，starting from \(\mathrm{Da} \geq 315 \mathrm{~mm}\) & \(\checkmark\) & \(\checkmark\) & & \(\checkmark\) & & \(\checkmark\) \\
\hline 28 & Scissors & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline 29 & Emery linen， 50 mm ，grain 60 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline 30 & Set of screwdrivers，kirve and cross & \(\checkmark\) & \(\checkmark\) & & \(\checkmark\) & & \(\checkmark\) \\
\hline 31 & Protecting glasses & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline 32 & Welding transformer／－machine（ 400 V ） & & & & \(\checkmark\) & & \\
\hline 33 & Welding pincers & & & & \(\checkmark\) & & \\
\hline 34 & Stretch band，at least 2 pieces & eventual & & & & & \(\checkmark\) \\
\hline 35 & Sprayer with soap－water & \(\checkmark\) & \(\checkmark\) & & \(\checkmark\) & & \\
\hline 36 & Steel brush & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline 37 & Mortise chisel & \(\checkmark\) & \(\checkmark\) & & \(\checkmark\) & & \(\checkmark\) \\
\hline 38 & Compass saw & eventual & & & & & \\
\hline 39 & Plug－welding machine（230 V） & \(\checkmark\) & \(\checkmark\) & & \(\checkmark\) & & \\
\hline 40 & Current aggregate，if required & \(\checkmark\) & \(\checkmark\) & & \(\checkmark\) & & \(\checkmark\) \\
\hline 41 & Tapestry roller & \(\checkmark\) & \(\checkmark\) & & \(\checkmark\) & & \\
\hline 42 & Temperature probe & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & eventual \\
\hline 43 & Carpet knife & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|l|c|c|}
\hline\(\#\) & \multicolumn{1}{|c|}{ Type of leak detecting } & IPS－Cu \({ }^{(1)}\) & IPS－NiCr® \\
\hline 45 & Wire distance holder，per coupler 2 pieces & \(\checkmark\) & \(\checkmark\) \\
46 & Electro pincer set（strip the insulation，press，cutter，kombi） & \(\checkmark\) & \(\checkmark\) \\
47 & isoplus－hand－system tester，type IPS－HST & \(\checkmark\) & \(\checkmark\) \\
48 & Soldering burner & \(\checkmark\) & \(\checkmark\) \\
49 & Soldering tin & \(\checkmark\) & \(\checkmark\) \\
50 & Pinch husks & \(\checkmark\) & \(\checkmark\) \\
\hline 51 & Shrinking tube & & \(\checkmark\) \\
\hline
\end{tabular}
\begin{tabular}{|c|l|c|c|c|}
\hline\(\#\) & \multicolumn{1}{|c|}{ Assembling fitting } & Coupler & Elbow & Branch \\
\hline 52 & Extruder welding unit（220 V），starting from \(D_{\mathrm{a}}=225 \mathrm{~mm}\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
53 & Hot－air welding unit（220 V），up to \(D_{\mathrm{a}}=200 \mathrm{~mm}\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
54 & PE－welding wire & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
34 & Stretch bands & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}

11 HANDLING POST INSULATION


\section*{is \(\bigcirc\) plus}

\section*{11 HANDLING POST INSULATION 11.2 Assembling Tools}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
\# 28 \\
\# 29
\end{tabular} &  &  \\
\hline  &  & \# 35 \\
\hline  &  &  \\
\hline  &  & \[
\text { \# } 43
\] \\
\hline  &  &  \\
\hline \[
\text { \# } 46
\] & \begin{tabular}{l}
\# 48 \\
\# 49
\end{tabular} & \# 51 \\
\hline  &  & \# 54 \\
\hline
\end{tabular}

\section*{11 HANDLING POST INSULATION}
11.3 Assembling Connection Coupler

\subsection*{11.3.1 PEHD - Shrinkable Coupler}


\section*{Working Procedure}

Technical description see chapter 6.2.2
Current assembly-instructions of the PEHD-Shrinkable Coupler are available in our downloadsection at www.isoplus.org .

11 HANDLING POST INSULATION
11.3 Assembling Connection Coupler

\subsection*{11.3.2 isojoint \(X^{\circledR}\) - Shrinkable Coupler}


Heat-shrinkable cross linked PEHD-pipe


Butyl-rubbersealing tape

two PE-venting- and weldable plugs each

\section*{Working Procedure}

\section*{Technical description see chapter 6.3.2}

Current assembly-instructions of the isojoint X-Shrinkable coupler are available in our downloadsection at www.isoplus.org .

\section*{11 HANDLING POST INSULATION}
11.3 Assembling Connection Coupler

\subsection*{11.3.3 isojoint III - Shrinkable Coupler}


\section*{Working Procedure}

Technical description see chapter 6.4.2
Current assembly-instructions of the isojoint III - Shrinkable coupler are available in our downloadsection at www.isoplus.org .

11 HANDLING POST INSULATION
11.3 Assembling Connection Coupler

\subsection*{11.3.4 Electro - Welding Coupler®}


Heat-shrinkable PEHD-pipe

two processor controlled copper-heat conductors

two PE-venting- and weldable plugs each

two heat shrinkable PE-hole-lockers

\section*{Working procedure}

Technical description see chapter 6.5.2
Current assembly-instructions of the Electro - Welding coupler are available in our download-section at www.isoplus.org .

\section*{11 HANDLING POST INSULATION}
11.3 Assembling Connection Coupler

\subsection*{11.3.5 isocompact \(^{\circledR}\) - Coupler}


\section*{Working Procedure}

Technical description see chapter 6.6.2
Current assembly-instructions of the isocompact - coupler are available in our download-section at www.isoplus.org.

11 HANDLING POST INSULATION
11.3 Assembling Connection Coupler

\subsection*{11.3.6 Spiro-Coupler}


\section*{Working procedure}

\section*{Technical description see chapter 6.7.2}

Current assembly-instructions of the Spiro - coupler are available in our download-section at www.isoplus.org.

\subsection*{11.3.7 Reduction - Shrinkable Coupler}

Delivery range and technical description see chapter 6.8.1 and 6.8.2

\subsection*{11.3.8 Double Reduction - Shrinkable Coupler}

Delivery range and technical description see chapter 6.9.1 and 6.9.2

\subsection*{11.3.9 Shrinkable End Coupler}

Delivery range and technical description see chapter 6.10.1 and 6.10.2

Assembly instruction for reduction coupler, double reduction coupler and shrinkable end coupler are the same like PEHD shrinkable coupler.

They are available in our download-section at www.isoplus.org.

\subsection*{11.3.10 Assembling Connection Coupler / Assembling Parts}

Assembly shrinking joints, bends, branch fittings, and short circuits must be separated in an axial direction during assembly, folded over the carrier pipe connection, and subsequently welded in accordance with the HDPE hot air or extrusion process.

Assembly parts should GENERALLY BE AVOIDED FOR QUALITY and WARRANTY REASONS !

Usage of these components is therefore restricted to absolute EXCEPTIONS (!!!); manufacturing may only take place at the EXPRESS WRITTEN request of the client and at the client's own risk.

Assembly joints/assembly fittings do NOT meet the requirements and regulations of EN 253 !

\section*{11 HANDLING POST INSULATION}
11.3 Assembling Connection Coupler

\subsection*{11.3.11 Assembling Half-Shells}


\section*{Working procedure}

\section*{Technical description see chapter 3.6}

Current assembly-instructions of the Assembling Half-Shells are available in our download-section at www.isoplus.org .

11 HANDLING POST INSULATION
11.4 PUR - Foam Table

\subsection*{11.4.1 Foam-Table}

Tables for the quantity of components \(A\) (polyol) and \(B\) (isocyanate) to be used for the different joint constructions are available in our download section at www.isoplus.org

The liter quantities [ltr] given in the tables are valid for a standard weight of the joint foam of \(80 \mathrm{~kg} / \mathrm{m}^{3}\) as well as for a length [L] of 440 mm of the non-insulated pipe section (carrier pipe). For other lengths \([\mathrm{L}]\) in mm , the required foam quantity \([\mathrm{V}]\) is calculated on the basis of the given quantities \(\left[\mathrm{v}^{\prime}\right](=\mathrm{A}, \mathrm{B}\) or \(\sum\) ) using the following simple rule of three:
\[
\mathrm{V}=\mathrm{V} \cdot \mathrm{~L} / 440 \quad[\mathrm{ltr}]
\]

The stated liters apply to a processing or air temperature of \(\geq+20^{\circ} \mathrm{C}\). At lower temperatures, these quantities must be multiplied by the correction factor of 1,3 .

\subsection*{11.5 Check list for Post Insulation}

\subsection*{11.5.1 for Building Site - Quality Assurance}

For building site it will be necessary to provide a guideline for a quality performance of the single working steps, in order to reach an optimization of the installing situation for preinsulated jacket pipes. This guideline will be valid in the same manner for civil underground engineering, pipe layer and pipe manufacturer. The most important test parameters are listed chronologically in the following table in accordance with the construction progress.
\begin{tabular}{|c|c|}
\hline Working step & Execution and result \\
\hline Considering of the working information from the corresponding system manufacturer & - The correct function of the total system is depending essentially from the consideration of all execution guidelines. \\
\hline \begin{tabular}{l}
Consideration of the wiring \\
Measuring of the pipeline in sections
\end{tabular} & \begin{tabular}{l}
- Wiring regulations and building site execution have to be congruent for a later fault location \\
- Recording of the measuring values in sections Receipt of an individual standard value for the pipeline in order to evaluate modifications later on Correct electrical transmission on the complete system
\end{tabular} \\
\hline \begin{tabular}{l}
Pricking out of the frontal PUR-foam of the factory produced pipes and fittings \\
Checking of reaction and validity of the PUR-foam components \\
Keeping of the temperature conditions for foaming
\end{tabular} & \begin{tabular}{l}
- Avoiding of construction moisture in the couplers \\
- Testing of required reaction and quality of foam by providing of test-foam before the real local foaming procedure \\
- Outside temperature at least \(15^{\circ} \mathrm{C}\), steel pipe not warmer than \(45^{\circ} \mathrm{C}\), in case of variation; providing of special measurements; foaming works may be not carried out at air temperatures below \(+5^{\circ} \mathrm{C}\) and at a relative humidity above \(90 \%\); works in the open should be avoided during rain \\
- In case that these requirements cannot be kept, additional special measurements, i. e. weather protection, pre-heating of the pipelines, have been provided by the buyer
\end{tabular} \\
\hline
\end{tabular}

11 HANDLING POST INSULATION
11.5 Check list for Post Insulation
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Working Steps } & \multicolumn{1}{c|}{ Execution and result } \\
\hline \begin{tabular}{l} 
Destroying test of single couplers by \\
taking drill-cones of 30 mm diameter or \\
testing of the total coupler-foam
\end{tabular} & \begin{tabular}{l} 
- Consideration of the quality guidelines of EN 253 \\
and EN 489 for apparent density, cell size, water \\
absorption, pressure resistance of the PUR-foam \\
produced at building site
\end{tabular} \\
\begin{tabular}{l} 
Preparing of a rough surface at the area \\
of the shrinkable sleeves at the jacket- \\
and socket-pipe, free from lubrication
\end{tabular} & \begin{tabular}{l} 
- Creating of optimal compound conditions of the \\
sleeves on the PEHD-surface
\end{tabular} \\
\begin{tabular}{l} 
Heating of the coupler- and jacket-pipe \\
for improving of the compound and \\
heating of the sleeve
\end{tabular} & \begin{tabular}{l} 
- Correct flow of the melt adhesive and lateral \\
penetration as sign for a complete heating of the area
\end{tabular} \\
Thumb test & \begin{tabular}{l} 
- Wrinkling should immediately disappear when \\
moving the sleeve with the thumb, due to swimming
\end{tabular} \\
on the melt-adhesive
\end{tabular}

See isoplus-Assembling Conditions chapter 11.5.2

\subsection*{11.5 Check list for Post Insulation}

\subsection*{11.5.2 isoplus - Assembling Conditions}
for executing of insulation- and sealing works at district heating compound systems by AGFW-/BFW-approved and isoplus- factory educated assembling engineers
1. In order to assure a qualitative optimal and exact terminated post insulation, an announcement in advance of at least five working days and during the months July, August, September and October even eight working days have to be considered. The execution of the insulation and sealing works will last approximately as long as the time for the pipe laying- and welding works.
2. The exact terminated completion of the works will depend from the detailed information about the extent of the works. isoplus will be not responsible for exceeding of the agreed date of completion, due to not sufficient information.
3. The pipe layer will be exclusively responsible for providing of all required system accessories for post insulation works (PUR-foam, shrinkable sleeves, expansion pads etc.) as well as for a dry, frostfree and protected against direct sun irradiation storing in a lockable room or container. PUR-foam has to be stored at temperatures between \(+15^{\circ} \mathrm{C}\) and \(+25^{\circ} \mathrm{C}\). The maximum storing period is 3 month.
4. In case of building ducts the delivered end- respectively shrinkable caps have to put on without any damage before the later welding works. During the welding works these parts have to be protected against heat and combustion. In case that this cannot be guaranteed, so called zip-end caps should be ordered and assembled. Standard end caps may not be cut off.
5. The completeness of all delivered accessories has to be checked and confirmed by the pipe layer at receipt of the material. Complaints will be accepted only within three days. Only the pipe layer will be responsible for any material which will disappear during the construction period.
6. The pipe layer will be generally responsible to drain the pipe trenches and to keep them free until the post insulation works will be completed, according to DIN 4033, section 5.3. The trenches have to be constructed according to the regulations of the Employer's Liability Insurance Association. The isoplus-laying guidelines have to be considered additionally.

The assembling progress as well as the quality of all required works, and therefore the expected lifetime of a district heating pipeline will essentially depend from a trench construction which will fulfill all regulations and guidelines.
7. PEHD-assembling fittings should be used only exceptionally, due to assembling technology reasons. These parts have to be checked and approved before using, by our technical departments concerning pipe-static. A production will be made only on written request. Sufficient construction space as well as a both side support should be available in order to produce assembling fittings at site.
8. For open line constructions the pipe layer has to install and to hold the required assembling scaffolds acc. to DIN 4420 free of charge, until completion of all laying- and post insulation works. The Employer's Liability Insurance Association regulations for prevention of accidents have to be considered.
9. Post insulation in manholes, buildings or channels will be only carried out if a sufficient ventilation and aeration can be granted at site. If this will be not the case, the shrinking works cannot be carried out.
10. Foaming works may not be carried out at air temperatures below \(+5^{\circ} \mathrm{C}\) and at a relative humidity of more than \(90 \%\) as well as during rain. In case that this will be not possible, additional measurements, i. e. weather protection or pre-heating, has to be provided by the purchaser. The temperature of the system components, the PEHD-jacket-pipe and the carrier pipe should be at least \(+15^{\circ} \mathrm{C}\), however may not exceed \(+45^{\circ} \mathrm{C}\). As executing party of the insulation and sealing works, isoplus will have the right to stop or to postpone the post insulation works in case of unfavourable weather conditions.
11. The disposal of all waste resulting from the insulation and sealing works will be on charge of the pipe-layer. The isoplus-assemblers will pack the waste in waste-sacks and will deposit it at the agreed collection place. The disposal of PUR-waste will be made via a house-waste-garbage, according to the kind of waste catalogue of the German Environment Department, according to waste-key-number 57110 for hardened PUR-foam. The liquified Polyol- and Isocyanat-components have to be deposit at a special-waste-garbage according to the waste-key-number 57202.
12. During installation of the final components of the leak detection the pipe-layer has to assure that all buildings, manholes etc. will be accessible and not closed.
13. Additional works which will be not to isoplus charge, will be generally invoiced separately. This will include:
\(\Rightarrow\) Additional approach and additional departure as well as overnight stay due to not sufficient information respectively not sufficient preparations.
\(\Rightarrow\) Not considering of the isoplus-laying guidelines, especially concerning sufficient assembling space at the areas of the couplers, assembling fittings and expansion pads.
\(\Rightarrow\) Cleaning works at the accessories and the welding spots, which are caused by not correct storage and not according to DIN prepared trenches.
\(\Rightarrow\) Repairing of complaints at system components, caused by a third party.
\(\Rightarrow\) Fees for waste disposal which has been charged to us.
\(\Rightarrow\) Additional approaches to building site in case of less than eight couplers for post insulation.
14. The purchaser will be obliged to confirm the assembling reports after completion of the insulation and sealing works.
15. For all kind of documentation which will be required during assembling but which has been not agreed, respectively which was not included in the offer, isoplus will invoice according to the occurred additional extra works and the actual isoplus-rate per hour. This will be also valid for eventual required technical documents, like master drawings, static calculations, wiring drawings etc.

\subsection*{12.1 Rigid Compound Systems}
12.1.1 General / Compound System / Laying Technology.
12/1-2
12.1.2 Survey Ad- and Disadvantages..................................................................... 12 / 3
12.1.3 Admissable Laying Length \(L_{\text {max }}\) Single Pipe at Conventional Laying............... 12 / 4
12.1.4 Admissable Laying Length \(L_{\text {max }}\) Double Pipe at Conventional Laying............ 12 / 5

\subsection*{12.2 Flexible Compound Systems}
12.2.1 General / Admissable Laying Length. ..... 12 / 6
12.2.2 Application isoflex and isocu ..... 12 / 6-7
12.2.3 Application isopex. ..... 12 / 8
12.2.4 Possibilities / Examples ..... 12 / 9-12

\subsection*{12.1 Rigid Compound Systems}

\subsection*{12.1.1 General / Compound System / Laying Technology}

\section*{General}

The preinsulated jacket-pipe (PJP) is proved practically since decades. In comparison with other conventional laying systems it offers essential advantages concerning economical, ecological and technical aspects.

An exact knowledge of the functional properties of the PJP-system will be necessary in order to use these advantages, because extensive special knowledge will be required for the project work.


Corresponding technical working resources have to be provided for the designing engineer, in order to develop economical useful and efficient district heating net works. In the following sections an introduction into the static knowledge will be given. This will however not cover the total extent of all projection work situations.

Therefore the isoplus-design engineers will be additionally available at each phase of construction, from tender up to execution and documentation, in order to work out all kind of information and required calculations for any individual problem.

The economical situation of the district heating requires to check the limits of pipe static calculations as well as the part-safety correction values [ \(\gamma_{M}\) ] of the used materials to a large extent. Therefore the design criteria have to be considered with high attention. This will be guaranteed only by using the latest EDV computing programs.

\section*{Compound System}

Carrier- and PEHD-jacket-pipe are non-positive connected with each other via the PUR-hard foam as a compound (compound system). Therefore this pipe system respectively laying technology will differentiate essentially compared to conventional procedures.

These special characteristics have to be considered during design and also during pipe laying, in order to guarantee a safe operation and a long lifetime of the PJP-pipeline.


Further information to project work is available in our download area www.isoplus.org

In case of thermal load all three components carrier pipe, PUR-foam and PEHD-jacket-pipe will expand axial constant, in the opposite to other pipe systems. Therefore all occurring external forces from soil and traffic loads as well as friction between jacket-pipe and surrounding soil (sand bed), will be transmitted on the carrier pipe. Due to the combined effect of these external as well as internal forces, caused by thermal expansion, several tensions will occur, which have to be taken from the compound system.

Because of this limiting values will occur, which have to be considered at design and assembling. The isoplus-PJP-systems may be used up to temperatures at minimum acc. to EN 253. On request a corresponding test certificate from an official material test authority (AMPA) can be seen.

Detailed and extensive static calculations will be required at higher temperatures as in EN 253 because this temperatures will cause enormous axial expansions and forces. Therefore the type of burden has to be checked exactly before beginning of the design, because admissible material parameter may reach their limit.

\section*{Laying Technology}

Pipe laying procedures will be differentiated essentially between Cold Laying and Hot Laying. These two main groups will be characterised again by five different technologies. According to the local regulations respectively restrictions of the pipeline which has to be designed as buried pipeline, among the following five laying procedures can be chosen:

\section*{Cold Laying}
1) Cold Laying
without limitation of admissible laying length
but with limitation of temperature to maximum \(85^{\circ} \mathrm{C}\)
2) Conventional Laying
with limitation of admissible laying length
and temperature according EN 253
3) Operative Self Prestressing
without limitation of admissible laying length but with limitation of temperature to maximum \(130^{\circ} \mathrm{C}\)

\section*{Hot Laying}
4) Thermal Prestressing without limitation of admissible laying length but with prestressing in not filled pipe trench and limitation of temperature according EN 253 (preheating temperature = average temperature)
5) One-Time-Compensator-System without limitation of admissible laying length but with prestressing in filled pipe trench with limitation of temperature according to EN 253 (preheating temperature according to static calculation)

\section*{12 PROJECT WORK}
12.1 Rigid Compound Systems
12.1.2 Survey Ad- and Disadvantages
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ Laying Technology } & \multicolumn{1}{c|}{ Advantage } & \multicolumn{1}{c|}{ Disadvantage }
\end{tabular} \left\lvert\, \(\left.\begin{array}{l}\text { 1) Cold laying } \\
\hline\end{array} \begin{array}{l}\text { - Slight axial tension from heat } \\
\text { extension } \\
\text { - Pipe trench may be filled } \\
\text { immediately }\end{array} \quad \begin{array}{l}\text { - Maximum admissible operating } \\
\text { temperature } 55^{\circ} \mathrm{C}\end{array}\right.\right\}\)
12.1.3 Admissible Laying Length \(L_{\text {max }}\) Single Pipe at convent. Laying
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|r|}{Dimensions Carrier Pipe} & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{\[
\begin{array}{|c|}
\hline \text { Jacket-Pipe Outside- } \\
\mathbf{D}_{\mathbf{a}} \\
\text { in } \mathrm{mm} \\
\hline
\end{array}
\]}} & \multicolumn{9}{|c|}{\multirow[t]{2}{*}{\(\mathbf{L}_{\text {max }}\) at a covering height \(\left[\mathrm{U}_{\mathrm{H}}\right]\) from upper edge, upper-edge-Jacket pipe (JP) up to upper-edge-terrain}} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Nominal Diameter in}} & \multirow[t]{4}{*}{\begin{tabular}{|c|}
\hline Outside- \\
\(\varnothing\) \\
\(d_{a}\) \\
in mm
\end{tabular}} & \multirow[t]{4}{*}{Wallthickness acc. to isoplus in mm} & & & & & & & & & & & & \\
\hline & & & & & & & & & & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\[
\frac{\ddot{U}_{\mathrm{H}}=\mathbf{1 , 2 0} \mathbf{~ m}}{\text { Insulation Class }}
\]}} & \multicolumn{3}{|c|}{\[
\ddot{\mathrm{U}}_{\mathrm{H}}=1,60 \mathrm{~m}
\]} \\
\hline & & & & \multicolumn{3}{|l|}{Insulation Class} & \multicolumn{3}{|r|}{Insulation Class} & & & & Insul & lation C & \\
\hline DN & Inches & & & Standard & 1x reinf. & 2x reinf. & Standard & 1x reinf. & 2x reinf. & Standard & 1x reinf. & 2x reinf. & Standard & 1x reinf. & \(2 \times\) reinf. \\
\hline 20 & 3/4" & 26,9 & 2,6 & 90 & 110 & 125 & 56 & 45 & 40 & 38 & 31 & 27 & 29 & 23 & 20 \\
\hline 25 & 1" & 33,7 & 3,2 & 90 & 110 & 125 & 87 & 70 & 61 & 59 & 48 & 42 & 45 & 36 & 32 \\
\hline 32 & 11/4" & 42,4 & 3,2 & 110 & 125 & 140 & 90 & 79 & 70 & 61 & 54 & 48 & 47 & 41 & 36 \\
\hline 40 & 11/2" & 48,3 & 3,2 & 110 & 125 & 140 & 104 & 90 & 80 & 71 & 62 & 55 & 54 & 47 & 42 \\
\hline 50 & 2 " & 60,3 & 3,2 & 125 & 140 & 160 & 114 & 101 & 88 & 78 & 69 & 60 & 59 & 53 & 46 \\
\hline 65 & 21/2" & 76,1 & 3,2 & 140 & 160 & 180 & 129 & 111 & 98 & 89 & 77 & 68 & 67 & 59 & 52 \\
\hline 80 & 3 " & 88,9 & 3,2 & 160 & 180 & 200 & 131 & 115 & 102 & 90 & 80 & 71 & 69 & 61 & 54 \\
\hline 100 & 4" & 114,3 & 3,6 & 200 & 225 & 250 & 148 & 130 & 115 & 103 & 91 & 81 & 79 & 70 & 62 \\
\hline 125 & 5 " & 139,7 & 3,6 & 225 & 250 & 280 & 159 & 141 & 124 & 111 & 99 & 88 & 86 & 76 & 68 \\
\hline 150 & 6 " & 168,3 & 4,0 & 250 & 280 & 315 & 187 & 165 & 145 & 132 & 117 & 103 & 102 & 91 & 80 \\
\hline 200 & 8" & 219,1 & 4,5 & 315 & 355 & 400 & 210 & 183 & 159 & 150 & 131 & 115 & 116 & 102 & 90 \\
\hline 250 & 10" & 273,0 & 5,0 & 400 & 450 & 500 & 218 & 190 & 167 & 158 & 138 & 123 & 124 & 109 & 97 \\
\hline 300 & 12" & 323,9 & 5,6 & 450 & 500 & 560 & 249 & 220 & 192 & 182 & 162 & 142 & 144 & 128 & 112 \\
\hline 350 & 14" & 355,6 & 5,6 & 500 & 560 & 630 & 240 & 210 & 181 & 177 & 155 & 135 & 140 & 123 & 108 \\
\hline 400 & 16" & 406,4 & 6,3 & 560 & 630 & 670 & 266 & 231 & 214 & 198 & 173 & 160 & 157 & 138 & 128 \\
\hline 450 & \(18{ }^{\prime \prime}\) & 457,2 & 6,3 & 630 & 670 & 710 & 257 & 238 & 222 & 193 & 179 & 168 & 154 & 144 & 135 \\
\hline 500 & 20" & 508,0 & 6,3 & 670 & 710 & 800 & 262 & 244 & 210 & 198 & 185 & 160 & 159 & 149 & 130 \\
\hline 600 & 24" & 610,0 & 7,1 & 800 & 900 & 1000 & 278 & 240 & 209 & 214 & 185 & 163 & 173 & 151 & 133 \\
\hline 700 & 28" & 711,0 & 8,0 & 900 & 1000 & - & 309 & 270 & - & 240 & 211 & - & 196 & 173 & - \\
\hline 800 & 32" & 813,0 & 8,8 & 1000 & 1100 & - & 332 & 294 & - & 261 & 232 & - & 215 & 192 & - \\
\hline 900 & 36" & 914,0 & 10,0 & 1100 & 1200 & - & 368 & 329 & - & 292 & 262 & - & 242 & 218 & - \\
\hline 1000 & 40" & 1016,0 & 11,0 & 1200 & 1300 & - & 359 & 324 & - & 287 & 260 & - & 239 & 217 & - \\
\hline
\end{tabular}

The values given in the table are based on the AGFW guideline FW 401 Part 10 and apply to soils with a specific weight of \(19 \mathrm{kN} / \mathrm{m}^{3}\), a maximum permitted shear stress [ \(\tau_{\text {PUR }}\) ] of \(\leq 0.04 \mathrm{~N} / \mathrm{mm}^{2}\) and an angle of internal friction [ \(\varphi\) ] of \(32.5^{\circ}\), and for black carrier pipes, material P235GH (welded or seamless), No. 1.0345, wall thickness in accordance with chapter 2.2.2 or 2.2.3.

Maximum permitted axial stress \(\left[\sigma_{z u}\right]\) in a straight pipe \(=190 \mathrm{~N} / \mathrm{mm}^{2}\), with a maximum operating temperature \(\left[T_{B}\right]\) of \(130^{\circ} \mathrm{C}\) and a nominal pressure of PN 25. Depending on the \(T_{B}\) and depth of cover [ \(\mathrm{U}_{\mathrm{H}}\) ] a laid length of \(\geq 120 \mathrm{~m}\) can cause an axial elongation [ \(\Delta \mathrm{L}\) ] of \(>80 \mathrm{~mm}\). This \(\Delta \mathrm{L}\) causes an expansion pad thickness [ \(\mathrm{DP}_{\mathrm{s}}\) ] of \(>120 \mathrm{~mm}\).
The PEHD casing pipe temperature is limited to a maximum of \(60^{\circ} \mathrm{C}\) according to AGFW FW 401, which in turn means a maximum permissible \(\mathrm{DP}_{\mathrm{s}}\) of 120 mm . If there is then an \(\Delta \mathrm{L}\) von \(>80 \mathrm{~mm}\), the expansion leg or pad should be pre-tensioned.
12.1.4 Admissible Laying Length \(L_{\text {max }}\) Double Pipe at convent. Laying
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|r|}{Dimensions Carrier Pipe} & \multicolumn{3}{|r|}{\multirow[t]{3}{*}{\[
\begin{gathered}
\text { Jacket-Pipe- } \varnothing \\
\mathbf{D}_{\mathbf{a}} \\
\text { in } \mathrm{mm}
\end{gathered}
\]}} & \multicolumn{2}{|r|}{\multirow{5}{*}{\begin{tabular}{l}
Spread \\
[K]
\end{tabular}}} & \multicolumn{9}{|r|}{\multirow[t]{2}{*}{\(L_{\text {max }}\) at covering height \(\left[U_{H}\right]\) from upper edge upper-edge-Jacket Pipe (JP) up to upper edge-terrain}} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Double Pipe Type}} & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{\[
\begin{array}{|c|}
\hline \text { Outside- } \\
\sigma \\
d_{a} \\
\text { in } m m
\end{array}
\]}} & \multirow[t]{4}{*}{Wallthickness isoplus in mm} & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & \multicolumn{4}{|c|}{\(\ddot{U}_{\mathrm{H}}=0,80 \mathrm{~m}\)} & \multicolumn{2}{|l|}{\(\ddot{U}_{H}=1,20 \mathrm{~m}\)} & \multicolumn{3}{|r|}{\(\ddot{U}_{\mathrm{H}}=1,60 \mathrm{~m}\)} \\
\hline & & & & & \multicolumn{3}{|r|}{Insulation Class} & & & \multicolumn{4}{|c|}{Insulation Class} & \multicolumn{2}{|l|}{Insulation Class} & \multicolumn{3}{|r|}{Insulation Class} \\
\hline DN & Inches & & & & \multicolumn{2}{|r|}{Standard} & 1x reinf. & & & \multicolumn{2}{|l|}{Standard} & \multicolumn{2}{|l|}{1 x reinf.} & Standard & \(1 \times\) reinf. & \multicolumn{2}{|l|}{Standard} & 1x reinf. \\
\hline 20 & 3/4" & \multicolumn{2}{|l|}{26,9} & 2,6 & & 25 & 140 & \multicolumn{2}{|r|}{\multirow{11}{*}{20 K}} & & 3 & 57 & & 43 & 39 & & & 30 \\
\hline 25 & \(1{ }^{\prime \prime}\) & \multicolumn{2}{|l|}{33,7} & 3,2 & & 40 & 160 & & & & 8 & 69 & & 54 & 48 & & & 36 \\
\hline 32 & 11/4" & \multicolumn{2}{|l|}{42,4} & 3,2 & & 60 & 180 & & & & 6 & 77 & & 60 & 54 & & & 41 \\
\hline 40 & \(11 / 2^{\prime \prime}\) & \multicolumn{2}{|l|}{48,3} & 3,2 & & 60 & 180 & & & & 7 & 87 & & 68 & 61 & & & 47 \\
\hline 50 & 2 " & \multicolumn{2}{|l|}{60,3} & 3,2 & & 00 & 225 & & & & 6 & 86 & & 68 & 61 & & & 47 \\
\hline 65 & 21/2" & \multicolumn{2}{|l|}{76,1} & 3,2 & 22 & 25 & 250 & & & & 06 & 95 & & 75 & 68 & & & 53 \\
\hline 80 & 3 " & \multicolumn{2}{|l|}{88,9} & 3,2 & & 50 & 280 & & & & 08 & 97 & & 77 & 69 & & & 54 \\
\hline 100 & \(4^{\prime \prime}\) & \multicolumn{2}{|l|}{114,3} & 3,6 & 31 & 15 & 355 & & & & 19 & 10 & & 86 & 77 & & & 60 \\
\hline 125 & 5 " & \multicolumn{2}{|l|}{139,7} & 3,6 & & 00 & 450 & & & & 08 & 96 & & 80 & 71 & & & 56 \\
\hline 150 & \(6^{\prime \prime}\) & \multicolumn{2}{|l|}{168,3} & 4,0 & & 50 & 500 & & & & 23 & 11 & & 92 & 83 & & & 66 \\
\hline 200 & 8" & \multicolumn{2}{|l|}{219,1} & 4,5 & \multicolumn{2}{|r|}{560} & 630 & & & & 34 & 11 & & 102 & 91 & & & 73 \\
\hline \multirow{3}{*}{Type} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Spread [K]}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{|l|}
\hline\(\ddot{U}_{\mathrm{H}}=0,80 \mathrm{~m}\) \\
\hline Insulation Class \\
\hline
\end{tabular}}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\ddot{U}_{H}=1,20 \mathrm{~m}
\]
Insulation Class}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{|l|}
\hline \ddot{\mathrm{U}}_{\mathrm{H}}=1,60 \mathrm{~m} \\
\text { Insulation Class } \\
\hline
\end{array}
\]}} & & \multirow{3}{*}{Type} & \multicolumn{2}{|l|}{\multirow[b]{3}{*}{Spread [K]}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{|l|}
\hline \ddot{\mathrm{U}}_{\mathrm{H}}=0,80 \mathrm{~m} \\
\hline \text { Insulation Class } \\
\hline
\end{array}
\]}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{|l|}
\hline \ddot{\mathrm{U}}_{\mathrm{H}}=1,20 \mathrm{~m} \\
\text { Insulation Class }
\end{array}
\]}} & \multicolumn{2}{|l|}{\(\mathrm{U}_{\mathrm{H}}=1,60 \mathrm{~m}\)} \\
\hline & & & & & & & & & & & & & & & & & Insulati & tion Class \\
\hline & & & Standard & d \(1 \times\) reinf. & Standard & \(1 \times\) reinf. & Standard & \(1 \times\) reinf. & & & & & Standard & rd \(1 \times\) reinf. & Standard & 1x reinf. & Standard & d \(1 \times\) reinf. \\
\hline 20 & \multicolumn{2}{|l|}{\multirow{11}{*}{30 K}} & 58 & 52 & 40 & 36 & 30 & 27 & & 20 & \multicolumn{2}{|l|}{\multirow{11}{*}{40 K}} & 53 & 48 & 37 & 33 & 28 & 25 \\
\hline 25 & & & 72 & 63 & 50 & 44 & 38 & 33 & & 25 & & & 66 & 58 & 45 & 40 & 35 & 31 \\
\hline 32 & & & 79 & 71 & 55 & 49 & 42 & 38 & & 32 & & & 72 & 65 & 50 & 45 & 39 & 35 \\
\hline 40 & & & 89 & 80 & 62 & 56 & 48 & 43 & & 40 & & & 82 & 73 & 57 & 51 & 44 & 39 \\
\hline 50 & & & 88 & 79 & 62 & 56 & 48 & 43 & & 50 & & & 81 & 72 & 57 & 51 & 44 & 39 \\
\hline 65 & & & 97 & 88 & 69 & 62 & 53 & 48 & & 65 & & & 89 & 80 & 63 & 57 & 49 & 44 \\
\hline 80 & & & 99 & 89 & 71 & 64 & 55 & 50 & & 80 & & & 91 & 81 & 65 & 58 & 50 & 45 \\
\hline 100 & & & 110 & 97 & 79 & 71 & 62 & 56 & & 100 & & & 100 & 89 & 73 & 65 & 57 & 51 \\
\hline 125 & & & 100 & 88 & 73 & 65 & 58 & 52 & & 125 & & & 91 & 81 & 67 & 60 & 53 & 47 \\
\hline 150 & & & 114 & 102 & 84 & 76 & 67 & 61 & & 150 & & & 104 & 93 & 77 & 70 & 62 & 56 \\
\hline 200 & & & 124 & 109 & 94 & 83 & 76 & 67 & & 200 & & & 113 & 100 & 86 & 76 & 69 & 62 \\
\hline \multirow{3}{*}{Type} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Spread [K]}} & \(\ddot{U}_{H}=0\) & 0,80 m & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{|l|l|}
\hline\(\ddot{U}_{\mathrm{H}}=1,20 \mathrm{~m}\) & \(\ddot{\mathrm{U}}_{\mathrm{H}}=1,60 \mathrm{~m}\) \\
\hline Insulation Class & Insulation Class \\
\hline
\end{tabular}}} & \multirow{3}{*}{Type} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Spread [K]}} & \multicolumn{2}{|l|}{\(\ddot{U}_{\mathrm{H}}=0,80 \mathrm{~m}\)} & \multicolumn{2}{|l|}{\(\mathrm{U}_{\mathrm{H}}=1,20 \mathrm{~m}\)} & \multicolumn{2}{|l|}{\(\ddot{U}_{H}=1,60 \mathrm{~m}\)} \\
\hline & & & \multicolumn{2}{|l|}{Insulation Class} & & & & & & & & & \multicolumn{2}{|l|}{Insulation Class} & \multicolumn{2}{|l|}{Insulation Class} & \multicolumn{2}{|l|}{Insulation Class} \\
\hline & & & Standard & d \(1 \times\) reinf. & Standard & 1x reinf. & Standard & 1x reinf. & & & & & Standard & rd \(1 \times\) reinf. & Standard & 1x reinf. & Standard & rd \(1 \times\) reinf. \\
\hline 20 & \multicolumn{2}{|l|}{\multirow{11}{*}{50 K}} & 48 & 43 & 33 & 30 & 25 & 23 & & 20 & & & 43 & 39 & 30 & 27 & 23 & 20 \\
\hline 25 & & & 59 & 52 & 41 & 36 & 31 & 28 & & 25 & & & 53 & 47 & 37 & 32 & 28 & 25 \\
\hline 32 & & & 65 & 58 & 46 & 41 & 35 & 31 & & 32 & & & 59 & 52 & 41 & 37 & 31 & 28 \\
\hline 40 & & & 74 & 66 & 52 & 46 & 40 & 36 & & 40 & & & 66 & 59 & 46 & 41 & 35 & 32 \\
\hline 50 & & & 73 & 65 & 52 & 46 & 40 & 36 & & 50 & & & 66 & 59 & 46 & 41 & 36 & 32 \\
\hline 65 & & & 81 & 73 & 57 & 52 & 44 & 40 & & 65 & 60 K & & 72 & 65 & 51 & 46 & 40 & 36 \\
\hline 80 & & & 82 & 74 & 59 & 53 & 46 & 41 & & 80 & & & 74 & 66 & 53 & 47 & 41 & 37 \\
\hline 100 & & & 91 & 81 & 66 & 59 & 52 & 46 & & 100 & & & 81 & 72 & 59 & 53 & 46 & 41 \\
\hline 125 & & & 83 & 73 & 61 & 54 & 48 & 43 & & 125 & & & 74 & 65 & 54 & 48 & 43 & 38 \\
\hline 150 & & & 94 & 84 & 70 & 63 & 56 & 50 & & 150 & & & 84 & 76 & 63 & 56 & 50 & 45 \\
\hline 200 & & & 103 & 91 & 78 & 69 & 63 & 56 & & 200 & & & 92 & 81 & 70 & 62 & 56 & 50 \\
\hline
\end{tabular}

If the double-pipe is being thermal stressed, the three components carrier pipes, PUR foam and PEHD jacket pipe, in contrast to others pipe systems, stretch axially on the effective average temperature between forward and reverse.
For the isoplus double pipe the maximum laying length \(\left[L_{\max }\right]\) is depending on the depth of cover \(\left[\mathrm{U}_{\mathrm{H}}\right]\) and spread \([\mathrm{K}]\).

The values given in the table are based on the AGFW guideline FW 401 Part 10 and apply to soils with a specific weight of \(19 \mathrm{kN} / \mathrm{m}^{3}\), a maximum permitted shear stress [ \(\tau_{\text {PUR }}\) ] of \(\leq 0.04 \mathrm{~N} / \mathrm{mm}^{2}\) and an angle of internal friction [ \(\varphi\) ] of \(32.5^{\circ}\), and for black carrier pipes, material P235GH (welded or seamless), No. 1.0345, wall thickness in accordance with chapter 2.3.2 or 2.3.3.
Maximum permitted axial stress \(\left[\sigma_{z u}\right]\) in a straight pipe \(=190 \mathrm{~N} / \mathrm{mm}^{2}\), with a maximum operating temperature \(\left[T_{\mathrm{B}}\right]\) of \(130^{\circ} \mathrm{C}\) and a nominal pressure of PN 25 .

\subsection*{12.2.1 General / Admissible Laying Length}

For flexible pipe systems as well as for rigid PJP-compound systems a high degree of conversion of special know-how will be required. The following examples will show proved pipe laying technology of isoplus-flexible pipes.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{|l}
\hline \text { Flex Pipe } \\
\hline \text { Type } \\
\hline
\end{array}
\]}} & \multicolumn{6}{|c|}{isoflex} & \multicolumn{8}{|c|}{isocu} \\
\hline & & 20 & 28 & 28 v & \multicolumn{3}{|c|}{28+28} & 22 & 28 & \multicolumn{3}{|c|}{22+22} & \multicolumn{3}{|c|}{28+28} \\
\hline Dimens & & 20x2,0/75 & 28x2,0/75 & 28x2,0/90 & \multicolumn{3}{|l|}{\(2 \cdot(28 \times 2,0) / 110\)} & 22x1,0/65 & 28x1,2/75 & \multicolumn{3}{|l|}{\(2 \cdot(22 \times 1,0) / 90\)} & \multicolumn{3}{|l|}{\(2 \cdot(28 \times 1,2) / 90\)} \\
\hline \multicolumn{2}{|l|}{spread in \(\mathbf{K}\)} & -- & -- & -- & 20 & 30 & 40 & -- & -- & 20 & 30 & 40 & 20 & 30 & 40 \\
\hline \multirow{4}{*}{} & 0,40 m & 47 & 67 & 56 & 74 & 67 & 59 & 29 & 38 & 27 & 23 & 20 & 40 & 35 & 30 \\
\hline & 0,60 m & 31 & 45 & 38 & 53 & 47 & 42 & 20 & 26 & 19 & 16 & 14 & 28 & 24 & 21 \\
\hline & 0,80 m & 24 & 34 & 28 & 41 & 37 & 32 & 15 & 20 & 14 & 13 & 11 & 21 & 19 & 16 \\
\hline & 1,00 m & 19 & 27 & 23 & 33 & 30 & 26 & 12 & 16 & 12 & 10 & 9 & 17 & 15 & 13 \\
\hline
\end{tabular}

Spread \([K]=\) Difference of temperature between flow and return line.
At operating temperatures \(<60^{\circ} \mathrm{C}\) no effect on isocu-pipe laying lengths.
At operating temperatures \(<85^{\circ} \mathrm{C}\) no effect on isoflex-pipe laying lengths.
The Values mentioned in the table are for soils with a specific weight of \(19 \mathrm{kN} / \mathrm{m}^{3}\) as well as a friction angle of \(32,5^{\circ}\). Parameters which will differ from that will lead to other lengths, which will be calculated from isoplus-design engineers on request. For bridges class SLW \(60\left(33,3 \mathrm{kN} / \mathrm{m}^{2}\right.\) surface load; 100 kN wheel load) a minimum covering height of \(0,40 \mathrm{~m}\) will be sufficient for all isoplus-flexible pipes.
isoflex: Maximum permissible axial tension [ \(\left.\sigma_{\text {zu }}\right]\) in straight pipe \(=150 \mathrm{~N} / \mathrm{mm}^{2}\)
isocu: Maximum permissible axial tension [ \(\sigma_{z u}\) ] in straight pipe \(=110 \mathrm{~N} / \mathrm{mm}^{2}\)
In case of pipe laying lengths \(>L_{\text {max }}\) isoflex- and isocu-pipelines should be thermal pre-stressed, or one of the following described first three application-technology (Loop-Technology, U-Compensation or Wave-Technology) has to be used. The axial expansion which will occur at every kind of technology has to be compensated by use of corresponding long expansion side legs and pads.
isopex-pipes are self compensating and may therefore be laid without limitation of laying lengths and without expansion pads. Due to the remaining tension and -bending after uncoiling, isopex-pipes may and will be laid similar like wave-technology.
isoclima-pipes will be installed generally without limitation of laying length and without expansion pads because of the maximum operating temperature of \(30^{\circ} \mathrm{C}\).

\subsection*{12.2.2 Application isoflex and isocu}

\section*{Loop-Technology}

Flexible pipes will be laid from building to building resp. from house connection area to house connection area, \(L_{\text {max }}\) has to be considered. In front of the building additionally an expansion side leg [DS], of at least \(1,00 \mathrm{~m}\), or a minimum bending radius [r] has generally to be considered.


\section*{12 PROJECT WORK}

\subsection*{12.2 Flexible Compound Systems}

\section*{U-Compensation}

In case of pipe laying lengths longer than \(L_{\text {max }}\) U-compensation may be used. From U-elbow to U-elbow the corresponding maximum pipe laying length \(L_{\text {max }}\) has to be kept. The length [a] and the width [b] of the U-elbows should be at least the double of the minimum bending radius \([r]\).

\section*{Wave-Technology}

Pipe laying in wavy lines may be also used in case that \(\mathrm{L}_{\text {max }}\) will be exceeded. The flexible pipes will be laid in wavy lines with a cross-measure [q] of at least \(2,00 \mathrm{~m}\).

At the beginning and at the end of such a section a \(90^{\circ}\) angle with a corresponding minimum bending radius [r] has to be provided. Branches can be not installed in this kind of technology.

\section*{Branch-Technology}

The connection of isoflex- resp. isocu-pipes will be made by use of pre-fabricated \(45^{\circ}\) - or parallelbranches.
It will be generally possible, to produce all kinds of branches, as described in chapter 2.2 and 2.3.

The connecting branch-pipe to the main pipe will be made by use of isoflex or isocu, depending from requirement, that means no additional carrier pipe and jacket-pipe reduction will be necessary.


Parallel-Branch

\(45^{\circ}\) T-Branch


\section*{12 PROJECT WORK \\ 12.2 Flexible Compound Systems}

\subsection*{12.2.3 Application isopex}

\section*{Transition PJP}

Before connection of isopex on a axial or/and lateral expanding pipe system like isoplus-jacket-pipe (PJP), the expansion has to be compensated. That means, that before the transition of the PJP-pipe an L-, Z- or U-elbow has to be projected, or an anchor (FP) has to be provided.


PASE = Press-Coupling with Welding-End
\(\mathbf{H R}=\) Bifurcated pipe
In case of a system-change within a PJP-branch-pipe, a rigid PJP-piece of pipe of at least \(2,50 \mathrm{~m}\) lengths has to be provided between branch and transition for compensation of lateral expansion.

Expansion side legs of PJP-systems have to be provided with expansion pads (EP), according to the isoplus line-drawing.

\section*{Branch isopex}

Alternatively it will be possible to carry out branches from several pipe systems with different kinds of connections and branches. The following isopex-branch technologies (possibilities A-D), see following pages, show the practically most used possibilities. In case of transitions to expanding pipe systems like i. e. isoplus-PJP (A-C), the pipe static has to be considered, see above. In case of other applications please contact isoplus-application engineers.

\section*{12 PROJECT WORK}

\subsection*{12.2 Flexible Compound Systems}

\subsection*{12.2.4 Possibilities / Examples}

\section*{isoplus-PJP - isopex Possibility A}

At the factory pre-insulated branch, according to the Design Manual, chapter 2.2 and 2.3, an isopexconnection coupling with unilateral welding end of steel will be welded to the corresponding branchsteel pipe of the prefabricated insulated branch, see chapter 3.6.5, and 10.2.17.

The post-insulation at this spot will be made by use of a connection coupler or reducing coupler, according to Design Manual, chapter 6 - Connection Technology Jacket-Pipe. Reducing couplers are only necessary if the outside diameter, \(\left[D_{a}\right]\) of the jacket pipe will be not the same as outside diameter of the isopex-pipe.

\section*{isopex - isopex \\ Possibility B}

In case that house connections have to be installed later on into a pipeline which is still not in operation, the installation will be also made by use of a isopexconnection coupling with unilateral welding end of steel.

The insulation of the main pipe will be removed for a length of maximum 400 mm . The branch diameter of the carrier pipe will be tapped or burned out. Thereafter the connection coupling will be welded electrically or autogenously to the rigid isoplus-PJPsystem, preferable in \(45^{\circ}\) angle. Connection coupling see chapter 3.6.5, assembling see chapter 10.2.17.

Post-insulation at this spot will be carried out by using half-shells, see chapter 3.6.4, or using an assembly branch. Informations concerning PEHD-assembly branches, see Design Manual, chapter 6-Connection Technology Jacket-Pipe!


\section*{isoplus-PJP - isopex Possibility C}

In case that the rigid PEHD-jacket-pipeline will be already in operation, the connection has to be carried out by tapping procedure and by use of isopexconnection coupler with unilateral welding end made of steel.

The insulation of the main pipe will be removed for a length of maximum 400 mm . Thereafter the corresponding dimensioned tapping lock will be welded electrically to the rigid isoplus-PJP-system, preferable with an angle of \(45^{\circ}\). Available tapping locks see Design Manual, chapter 7.1.2.

After the tapping has been carried out in accordance to Design Manual chapter 10.2.11 also the connection coupling has to be welded electrically to the tapping lock. Connection coupling see chapter 3.6.5, assembling see chapter 10.2.17.

Post-insulation at this spot will be carried out by use of PEHD-assembling branch, see Design Manual, chapter 6 - Connection Technology jacket-pipe. Due to the bigger nominal diameter of the tapping lock eventually an reinforced insulation thickness will be required at the branch, respectively a reducing coupler has to be provided.

\section*{isopex - isopex \\ Possibility D}

Branches within the isopex-system will be carried out with isopex-T-pieces which should be preferable assembled with a branch-angle of \(45^{\circ}\).

The flexible pipes will be cut right-angled and the insulation will be removed at all three ends to a length of maximum 150 mm . Thereafter the T-piece has to be fixed at the pipe ends, as described on chapter 10.2.17. Post-insulation of this branches will be carried out with GFK-assembly branches, see chapter 3.6.4.


\section*{12 PROJECT WORK}

\subsection*{12.2 Flexible Compound Systems}

\section*{House Connection}

\section*{with \(45^{\circ}\) T-Branch}

Buildings can be connected directly up to a distance of \(9,00 \mathrm{~m}\) with isoflex and isocu, by using a \(45^{\circ}\)-branch.

Before the house-entry an expansion side-leg of a length corresponding to the double of the minimum bending radius \([r]\) has to be provided. This will guarantee that inside of the building no expansion and no other strength have to be compensated.


In case of isopex and isoclima a limitation of length will be not necessary.

\section*{with Parallel-Branch}

In case of parallel connections an expansion sideleg with a length according to the minimum bending radius [r] has to be provided for the exit pipe of the branch.

From this side-leg to the building the max. permissible pipe laying length [ \(\mathrm{L}_{\text {max }}\) ], has to be considered in case of isoflex and isocu see chapter 12.2.1, or longer length one of the described pipe laying possibilities should be used, chapter 12.2.2.

In front of the house-entry a side-leg, preferable with the double length of the minimum bending radius [r] has to be provided, for the same reasons as at \(45^{\circ}\)-connection.

A limitation of the length is not necessary in case of isopex and isoclima.

\section*{at Sloping Terrain}

In case that big height-differences i. e. terrainembankments have to be overcome, isoplus-flexible pipes will be particularly suitable.

The connection to the main pipeline will be made as already described with \(45^{\circ}\) - or parallel-branch.


\section*{House Connection without Cellar}

\section*{with Elbow - Outside}

According to requirement PJP-elbows with standard side-legs or \(1,00 \cdot 1,00 \mathrm{~m}\) or \(1,00 \cdot 1,50 \mathrm{~m}\) length will be used, see Design Manual, chapter 2.2.7 and 2.3.7 and 3.6.2.

In connection with isopex connection couplers with one-side welding end will be required, see chapter 3.6.5, assembling see chapter 10.2.17.

Post-insulation of the connection spots will be made by use of corresponding connection couplers, see Design Manual, chapter 6 - Connection Technology Jacket-Pipe.

\section*{with Elbow - Inside}

House-entry-elbows (HEB) with a standard delivery length of \(1,00 \cdot 1,50 \mathrm{~m}\) will be also used for houses without cellar, see chapter 3.6.2.

This solution will guarantee that there will be no connection coupler in the foundation and in the area of the ground-plate of the house. Post-insulation of the connection spots will be made by use of a connection coupler.

\section*{with Guiding Pipe}

During construction of the house a suitable and flexible guiding pipe has to be installed into the foundation and into the ground-plate. The diameter of the protecting pipe should be at least 30 mm bigger than the PELD-jacket-pipe dimension of the flexible pipe.

ATTENTION: Minimum bending radius [r] of the used flexible pipe has to be kept absolutely.

\section*{Special}

Special constructions for house connections of houses without cellar may be installed only after agreement and approval by isoplus design-engineers.


\section*{13 SPECIFICATIONS}
is plus

We offer the specifications and the tender text in different formats to download at www.isoplus.org
For inquiry regarding this issue please send an e-mail to ausschreibung@isoplus.de or call our headquarter in Germany/Rosenheim on 00498031 650-0.


14 SUPPLEMENT / NOTES


14 SUPPLEMENT / NOTES```


[^0]:    info@isoplus.de

